Responsive image
博碩士論文 etd-0806112-161640 詳細資訊
Title page for etd-0806112-161640
論文名稱
Title
結晶效應於雙結晶性嵌段共聚物之自組裝行為影響
Crystallization Effect on Self-Assembly of Double-Crystalline Block Copolymers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-06
繳交日期
Date of Submission
2012-08-06
關鍵字
Keywords
相分離強度、微觀相分離、玻璃轉換溫度效應、雙結晶、高分子嵌段共聚物
Segregation Strength, Microphase Separation, Tg effect, Double crystalline, Block Copolymer
統計
Statistics
本論文已被瀏覽 5719 次,被下載 138
The thesis/dissertation has been browsed 5719 times, has been downloaded 138 times.
中文摘要
本研究是探討含雙結晶性嵌段共聚物之結晶行為於其微觀相分離之效應。由於含對位聚4-甲基-1-戊烯與聚左旋乳酸之嵌段共聚物(syndiotactic poly(4-methyl-1-pentene)-b-poly(L-lactide), sPMP-PLLA)與含對位聚4-甲基苯乙烯與聚左旋乳酸之嵌段共聚物(syndiotactic poly(4-methylstyrene)-b-poly(L-lactide), sPMP-PLLA BCP)具有可染色之化學結構,可進行選擇性染色並藉由穿透式電子顯微鏡觀察其形態。因此這兩種雙結晶性嵌段共聚物可被合成出來探討此研究方向。
根據微差掃描式熱分析儀與廣角X光繞射發現sPMP-PLLA嵌段共聚物(sPMP之體積分率為0.52 (fsPMPv=0.52))之sPMP與PLLA鏈段在80°C 到120°C之等溫結晶溫度皆會結晶。在不同的結晶溫度之廣角X光繞射結果發現PLLA結晶的相轉換。經由小角度X光散射的結果與穿透式電子顯微鏡的觀察, sPMP-PLLA (fsPMPv=0.52)之微觀想分離結構為一層板狀結構,在80°C 到120°C之等溫結晶溫度之sPMP-PLLA 也保有層板狀構造。這結果說明sPMP與PLLA 之結晶被強烈地侷限在其層板之微觀相分離。同時偏光顯微鏡的觀察結果顯示一不明顯的雙折射的影像,更進一步得證實了上述結果。根據時間解析(time-resolved)之小角度X光散射與廣角X光繞射結果,在結晶溫度為90oC與110oC時, sPMP鏈段先結晶並且增厚了層板厚度,並且形成一剛硬之層板狀模板,使得隨後結晶的 PLLA 鏈段被侷限於此模板內。
經由小角度X光散射與穿透式電子顯微鏡的鑑定, sPMS-PLLA (fsPMSv=0.58)之微觀想分離結構為一層板狀結構。根據微差掃描式熱分析儀的結果顯示PLLA 嵌段之結晶溫度為90°C~100°C;sPMS 嵌段之結晶溫度為Tc &#8805;120oC。藉由自我成核的方法可成功地使 sPMS與PLLA 嵌段共同結晶。因此,藉由調控不同的條件使sPMS-PLLA (fsPMSv=0.58)單一嵌段結晶、二階段結晶以及共同結晶,藉此可以有系統地研究單一結晶或雙結晶、玻璃轉換溫度效應與微觀相分離強度之關係。經由小角度X光散射與穿透式電子顯微鏡結果,無論是軟相侷限(Tc,PLLA&#707;Tg,sPMS)或硬相侷限(Tc,PLLA<Tg,sPMS),PLLA結晶後其微觀相分離層板結構被保存下來。對於 sPMS 嵌段結晶在軟相侷限環境下而言,在結晶溫度低於140oC時,層板結構會保留,但結晶溫度高於150 oC時,sPMS結晶會破壞原本微觀相分離之層板結構。因此,最後的結構與sPMS-PLLA (fsPMSv=0.58)嵌段共聚物之微觀想分離強度呈現正相關之關係。
sPMS-PLLA (fsPMSv=0.7)嵌段共聚物之微觀相分離結構為六角堆積的柱狀結構,其中PLLA呈現柱狀型態且六角堆積於sPMS相中。根據微差掃描式熱分析儀結果顯示,sPMS 嵌段可於結晶溫度為130°C到180°C間結晶,但是柱狀之PLLA 嵌段結晶沒有發生。這是因為二維的柱狀結構造成的局限效應,導致PLLA呈現不結晶的狀態. 經由小角度X光散射與穿透式電子顯微鏡鑑定,在 sPMS 結晶溫度低於130oC時,因為嵌段共聚物相分離強度的因素使得固有的柱狀結構在sPMS結晶後,沒有受到破壞而保留其柱狀結構。反之,在 sPMS 結晶溫度低於150oC時,sPMS 結晶驅動力破壞原本微觀相分離結構而呈現破壞的型態。
Abstract
Double crystalline block copolymers (BCPs), syndiotactic poly(4-methyl-1-pentene)-b-poly(L-lactide) (sPMP-PLLA) and syndiotactic poly(4-methylstyrene)-b-poly(L-lactide) (sPMS-PLLA), were synthesized to examine crystallization effect on the self-assembled morphologies in the double crystalline BCPs. Because of the stainable chemical structures, morphological observation can be carried out in these double crystalline BCPs. Also, different microphase-separated structures including lamellae and hexagonally packed cylinders were explored to study the shape effect for double crystallization.
Based on differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) results, both sPMP and PLLA blocks are able to crystallize in the sPMP-PLLA BCP (fsPMPv=0.52) at the crystallization temperature (Tc) from 80°C to 120°C. Notably, temperature-dependent phase transitions between the PLLA polymorphisms are obtained by WAXD. By using small-angle X-ray scattering (SAXS) and transmission electron microscope (TEM), the microphase-separated lamellar structures can be observed in the sPMP-PLLA BCP (fsPMPv=0.52). Also, the preservation of the lamellar morphology at all Tcs (80°C~120°C) indicates that the sPMP and PLLA crystallization can be strongly confined within the lamellar microstructures due to the strong segregation strength of the sPMP-PLLA (fsPMPv=0.52) BCP. This can be further demonstrated by the ambiguous birefringence under polarized light microscope (PLM). According to the time-resolved SAXS and WAXD profiles at 90oC and 110oC, the sPMP block crystallizes first and induces the enlargement of the BCP long period. Also, the leading sPMP crystallization gives rise to the robust lamellar microstructural template and result in strong confinement for the subsequent PLLA crystallization.
In the sPMS-PLLA BCP (fsPMSv=0.58), the microphase-separated lamellar nanostructures can be found by SAXS and TEM. DSC analysis shows that PLLA block is able to crystallize as Tc=90°C~100°C; the sPMS block is able to crystallize as Tc &#8805;120oC. By self-nucleation processes, both sPMS and PLLA blocks are able to crystallize. Therefore, by the manipulation of the respective crystallization, two-stage crystallization and coincident crystallization, systematic studies in the semi-crystallization, double crystallization and coincident double crystallization with the accompanying environmental Tg effect and BCP segregation strength can be carried out in the lamella-forming sPMS-PLLA (fsPMSv=0.58) BCP. By SAXS and TEM, the microphase-separated lamellar microstructures can be preserved in the self-assembly of the sPMS-PLLA (fsPMSv=0.58) BCP whatever the PLLA crystallization occurs under hard confinement (Tc,PLLA<Tg,sPMS) or soft confinement(Tc,PLLA&#707;Tg,sPMS). For the sPMS crystallization under soft confinement, the lamellar microstructures can be preserved as Tc,sPMS &#8804;140oC, whereas the breakout morphology by the sPMS crystallization is found as Tc,sPMS &#8805;150oC. As a result, the final morphologies is strongly dependent on the BCP segregation strength in the lamella-forming sPMS-PLLA (fsPMSv=0.58) BCP.
In sPMS-PLLA BCP (fsPMSv=0.7), hexagonally-packed PLLA cylinders in the sPMS matrix are obtained by SAXS and TEM. DSC analysis shows that the sPMS block is able to crystallize as Tc=130°C~180°C, whereas no PLLA crystallization can be found in the cylinder-forming sPMS-PLLA BCP (fsPMSv=0.7). This indicates that the 2-D cylindrical shape might give rise to the strong confined effect and result in non-crystallizable PLLA. According SAXS and TEM results, the intrinsic hexagonally-packed cylinders can be preserved after the sPMS crystallization at 130oC due to the strong BCP segregation strength. By contrast, the crystallization driving force may overwhelm the microphase separation so as to form breakout morphology in the sPMS-PLLA (fsPMSv=0.7) BCP as Tc&#8805;150°C.
目次 Table of Contents
Abstract I
Table of Contents VI
List of Tables VII
Figure Captions VIII
Chapter 1. Introduction 1
1.1 Self-assembly 1
1.2 Self-assembly of Block copolymers 2
1.3 Crystalline Diblock Copolymers 4
1.3.1 Microphase-separated morphology of Semicrystalline BCPs 4
1.3.2 Segregation strength effect 7
1.3.3 Hard and soft confinement/glass transition temperature effect 9
1.3.4 Double crystalline BCPs 12
Chapter 2. Objectives 14
Chapter 3. Materials and Experimental Methods 16
3.1 Materials 16
3.1.1 Synthesis of syndiotactic Poly(4-methylstyrene)-b-poly(L-lactide) (sPMS-PLLA ) 16
3.1.2 Synthesis of syndiotactic Poly(4-methy-1-pentene)-b-poly (L-lactide) (sPMP-PLLA ) 17
3.1.4 Sample Preparation 18
3.2 Microstructural Characterization 19
3.2.1 small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) 19
3.2.2 Transmission electron microscopy (TEM) 20
3.3.3 Differential scanning calorimetry (DSC) 20
Chapter 4. Results and Discussion 22
4.1 Double Crystalline sPMP-PLLA BCP. 22
4.1.1 Characterization of sPMP-PLLA BCP. 22
4.1.2 Crystallization of Double Crystalline sPMP-PLLA BCP.. 29
4.1.3 Crystal Orientation within Lamellar Microdomains of sPMP-PLLA BCP.. 46
4.2 Double Crystalline sPMS-PLLA BCP with Lamellar Microdomains. 55
4.2.1 Characterization of Lamella-Forming sPMS-PLLA BCP. 55
4.2.2 Crystallization in 1-D spatial Confinement 58
4.2 Double Crystalline sPMS-PLLA BCP with Lamellar Microdomains. 66
4.2.1 Characterization of Cylinder-Forming sPMS-PLLA BCP. 66
4.2.2 Crystallization in 2-D Spatial Confinement 68
Chapter 5. Conclusions 74
Chapter 6. References 78
參考文獻 References
1. Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
2. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
3. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
7. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
8. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
9. Loo, Y. -L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
10. Ho, R.-M.; Lin, F.-H.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Hsiao, B. S.; Sics, I. Macromolecules 2004, 37, 5985.
11. Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
12. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
13. Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551
14. Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur. Polym. J. 1992, 28, 1219.
15. Kofinas, P.; Cohen, R. E. Macromolecules 1994, 27, 3002.
16. Mai, S. -M.; Fairclough, J. P. A.; Viras, K.; Gorry, P. A.; Hamley, I. W.; Ryan, A. J.; Booth, C. Macromolecules 1997, 30, 8392.
17. Hillymer, M. A.; Bates, F. S. Macromol. Symp. 1997, 117, 121.
18. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
19. Chen, H.-L.; Wu, J. C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
20. Loo, Y. -L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
21. Xu, J.-T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C.; Booth, C. Macromolecules 2002, 35, 3614.
22. Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
23. Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Macromolecules 1994, 27, 2321.
24. Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 247.
25. Liu, L. -Z.; Yeh, F.; Chu, B. Macromolecules 1996, 29, 5336.
26. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
27. Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
28. Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
29. Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2053.
30. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, G.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
31. Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
32. Zhu, L.; Cheng, S. Z-D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S,; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
33. Zhu, L.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Cheng, S. Z-D.; Thomas, E. L.; Hsiao, B. S,; Yeh, F.; Liu, L.; Lotz, B. Macromolecules 2001, 34, 1244.
34. Sun, L.; Zhu, L.; Ge, Q.; Quirk, R. P.; Xue, C.C.; Cheng, S. Z. D.; Hsiao, B. S.; Avila-Orta C. A.; Sics, I.; Cantino, M. E. Polymer 2004, 45, 2931.
35. Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I.; Macromolecules 2004, 37, 3689.
36. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
37. Hamley, W.; Castelletto, V.; Castillo, R. V.; Muller, A. J.; Martin, C. M.; Pollet, E.; Dubois, Ph. Macromolecules 2005, 38, 463.
38. Castillo, R. V.; Muller, A. J; Lin, M. C.; Chen, H. L.; Jeng, U. S.; Hillmyer, M. A. Macromolecules 2008, 41, 6154
39. Hsiao, T.-J.; Lee, J.-Y.; Mao, Y.-C., Chen, Y.-C., Tsai, J.-C.; Lin, S.-C.; Ho, R.-M. Macromolecules 2011, 44, 286.
40. Sakai, F.; Nishikawa, K.; Inoue, Y.; Yazawa, K. Macromolecules 2009, 42, 8335.
41. De Ross, C.; Venditto, V.; Guerra, G.; Corradini, P. Macromolecules 1992, 25, 6938.
42. Krouse, S. A.; Schrock, R. R.; Cohen, R. E. Macromolecules 1987, 20, 904.
43. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, J. Macromolecules 2008, 47, 1352.
44. Muller, A. J.; Balsamo, V.; Arnal, M. L.; Jakob, T.; Schmalz, H.; Abetz, V. Macromolecules 2002, 35, 3048.
45. Zettlemoyer, A. C., Ed.; Nucleation; Marcel Dekker: NewYork, 1969.
46. Barham, P. J.; Jarvis, D. A.; Keller, A. J. Polym. Sci., PolymPhys. Ed. 1982, 20, 1733.
47. Petraccone, V.; La Camera, D.,; Pirozzi, B.; Rizzo, P.; De Rosa, C. Macromolecules 1998, 31, 5830.
48. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; Nakajima, K.; Matsuda, M. Macromolecules 2007, 40, 9463.
49. Brizzolara, D.; Cantow, H.-J. Macromolecules 2007, 40, 9463.
50. De Rosa, C.; Grassi, A.; Capitani, D. Macromolecules 1998, 31, 3163.
51. Kobayashi, J.; Asahi, T.; Ichiki, M.; Oikawa, A.; Suzuki, H.; Watanabe, T.; Fukada, E.; Shikinami, Y. J. Appl. Phys. 1995, 77, 2957.
52. Hoogsteen, W.; Postema, A.; Pennings, A.; Ten Brinke, G.; Zugenmaier, P. Macromolecules 1990, 23, 634.
53. Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B.Polymer 2000, 41, 8921.
54. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909.
55. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N. Macromolecules 2007, 40, 9463.
56. De Rosa, C.; Venditto, V,; Guerra G.; Corradini, P.; Polymer 1995,36 ,3619.
57. Chen, H. L. Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules 2001 , 34, 6936.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code