Responsive image
博碩士論文 etd-0806112-195805 詳細資訊
Title page for etd-0806112-195805
論文名稱
Title
受體摻雜或共同摻雜對於鈦酸鋇之多層陶瓷電容器的應用
Acceptor-doped and co-doped BaTiO3 ceramics for MLCC applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
390
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-23
繳交日期
Date of Submission
2012-08-06
關鍵字
Keywords
電子顯微鏡、拉曼光譜、散佈式相變化、直流劣化、多層陶瓷電容器
Raman spectroscopy, dc degradation, DPT, electron microscopy., MLCC
統計
Statistics
本論文已被瀏覽 5718 次,被下載 1543
The thesis/dissertation has been browsed 5718 times, has been downloaded 1543 times.
中文摘要
以鈦酸鋇 (BaTiO3)、鎳卑金屬電極 (base-metal electrode, BME) 為基本組成的多層陶瓷電容器 (multi-layer ceramic capacitors, MLCCs),於固相燒結添加劑,例如:CaO、MgO、Y2O3、CoO和MnO2,雖然已知提供了半導性、介電性,然而它們的作用、角色特別是微量卻有巨幅改質作用的效應。
本研究即是探討固相添加劑在陶瓷燒結製程、功能特性中之角色,我們將嘗試瞭解三個重要的製程參數:兩個鹼土金屬氧化物CaO和MgO做為固相燒結添加劑,與燒結氣氛下的氧氣分壓力。研究中將使用商業鈦酸鋇粉體 (平均粒徑R50 = 200 nm)、以模擬 MLCC 製程的還原、與氧化兩階段燒結,並選取與 EIA-X7R 介電性規範的鈦酸鋇組成裡,經常為多層陶瓷電容器工業界所沿用的鹼土金屬氧化物 CaO,和近年來被發現足以抵擋直流劣化 (dc degradation) 、提高 MLCC 壽命的 MgO,做為主要探討的對象。除了建立燒結體的介電性與溫度的相依性,即temperature coefficient of capacitance (TCC),同時也針對它們相變化、介穩相保留,進行詳細、深入,定性並定量的探討,如:室溫時的結晶相組成是 tetragonal (T) 相,或是與cubic (C) + orthorhombic (O) + rhombohedral (R) 等相的混合,進行巨觀的 X-光繞射 (XRD)、Raman 光譜解析,與微觀電子顯微鏡 (SEM、TEM),、擇區電子繞射 (SADP)、集束電子繞射 (CBED),配合使用 energy-dispersive spectrometry (EDS) 做微化學分析,進行觀察、鑑定。
我們期待本研究可得存在掺雜鈦酸鋇 (doped-BaTiO3) 晶粒的化學成份不均勻所造成的散佈式相變化 (diffuse phase transition, DPT),提供結晶結構的直接實驗證據;經由缺陷化學的討論,並輔佐與微結構的解析,提出鹼土金屬氧化物、氧分壓對於影響散佈式相變化與X7R 介電性形成的機制、角色。
關鍵詞:多層陶瓷電容器、直流劣化、散佈式相變化、拉曼光譜、電子顯微鏡。
Abstract
It is particularly intriguing in the role of the solid-state dopants, which are not only responsible for the semiconductivity, but also the dielectric properties of BaTiO3 ceramics, e.g. CaO, MgO, Y2O3, CoO and MnO2 for EIA-X7R characteristics.
We have chosen to investigate three important processing parameters, oxygen partial pressure (pO2) for sintering, and two alkali-earth-metal oxides, i.e. CaO and MgO for solid-state additives in order to study how microstructure and dielectric properties are determined by them. They are used in MLCC industry for the effect in attaining X7R characteristics and protecting against or improving for dc degradation. Apart from establishing the temperature-dependent dielectric properties, i.e. temperature-coefficient of capacitance (TCC), for both qualitative and quantitative analysis, crystalline phases in sintered ceramics of tetragonal mixed with cubic, orthorhombic and rhombohedral phases are studied using XRD and Raman spectroscopy. For microscopic studies, SEM and TEM techniques, e.g. CBED and LACBED, combined with EDS are used to study phases both in core-shell.
We will examine and confirm the fidelity of whether core-shell grains are induced by chemical inhomogeneity, and more importantly, if the diffuse phase transition is caused by such microstructure with direct observations, as previous studies in perovskite-related ceramics, and crystalline phase determination for these grains. It is also an objective that we investigate why and how, by what mechanism, the chemically similar alkali-earth metal oxides should impart completely different (and indeed opposite) effect in protecting against dc degradation.
Keywords: MLCC, dc degradation, DPT, Raman spectroscopy, electron microscopy.
目次 Table of Contents
摘要.................................................................................................................................. i
英文摘要.......................................................................................................................... ii
表目錄....................................................................................................................... xxviii
第一章 前言.................................................................................................................... 1
第二章 文獻回顧............................................................................................................ 2
2.1 鈦酸鋇結構與特性................................................................................................ 2
2.2 平衡相圖............................................................................................................... 5
2.3 鈦酸鋇的缺陷化學 (Defect Chemistry) ............................................................ 10
2.4 積層陶瓷 (Multilayer Ceramic Capacitor)...........................................................11
2.5 古典強電性理論................................................................................................. 18
2.6 極化與介電常數特性......................................................................................... 20
2.7 殼核結構 (Core-shell structure)......................................................................... 23
2.8 殼核結構對於多層電容器的影響..................................................................... 33
2.8.1 擴散性相變化 (Diffuse Phase Transition, DPT) 之定義...........................33
2.8.2 擴散性相變化(Diffuse Phase Transition, D. P. T)之生成機構研究............38
2.9 積層陶瓷電容器的劣化 (Degradation).............................................................. 62
2.9.1 電性量測---探討添加鹼土族元素 (CaO 與MgO) 對於積層陶瓷電容器的
劣化.........................................................................................................................62
2.9.2 微結構觀察---探討添加鹼土族元素 (CaO 與MgO) 對於積層陶瓷電容器
的劣化.....................................................................................................................67
2.10 積層陶瓷電容器的介電行為............................................................................ 75
2.10.1 巨觀-探討添加鹼土族元素對於積層陶瓷電容器的介電行為.................75
2.10.2 微觀-探討添加鹼土族元素對於積層陶瓷電容器的介電行為................96
iv
2.11 研究目標........................................................................................................... 99
第三章 實驗步驟.........................................................................................................116
3.1 試片製作.............................................................................................................116
3.2 氧氣分壓量測................................................................................................... 127
3.3 介電常數量測[12] ............................................................................................ 130
3.4 高加速壽命測試 (Highly Accelerated Life Testing, HALT)........................... 132
3.5 X-ray 繞射分析與拉曼光譜............................................................................. 133
3.5.1 Diffracplus-TOPASR (Bruker AXS, Karlsrule, Germany) 定量分
析步驟.................................................................................................................134
3.6 拉曼光譜儀....................................................................................................... 144
3.7 電子順磁共振基本原理 (Electron Paramagnetic Resonance, EPR)............... 144
3.7.1 電子順磁共振實驗步驟.............................................................................147
3.7.2 電子順磁共振定量步驟.............................................................................149
3.8 光學顯微鏡 (OM)............................................................................................ 155
3.9 掃描式電子顯微鏡 (SEM) .............................................................................. 155
3.10 TEM 試片的準備............................................................................................. 155
3.11 穿透式電子顯微鏡 (TEM) ............................................................................ 156
3.11.1 光集束電子繞射圖原理............................................................................156
3.11.2 光集束電子繞射圖三維空間資訊判斷晶體資訊....................................159
第四章 實驗結果........................................................................................................ 176
4.1 高加速壽命測試與可靠度關係....................................................................... 176
4.2 介電性質........................................................................................................... 177
4.3 結晶相............................................................................................................... 181
4.3.1 X 光繞射圖與TOPASR軟體Rietveld 分析..............................................181
4.3.2 拉曼光譜.....................................................................................................190
v
4.4 使用順磁共振 (Electron Paramagnetic Resonance, EPR) 了解鈦酸鋇添加受體
氧化物之外質缺陷 (Extrinsic defect) 濃度的變化.............................................. 194
4.5 巨觀微結構觀察............................................................................................... 214
4.6 微觀微結構觀察............................................................................................... 218
4.6.1 靠近鎳電極附近微結構觀察.....................................................................218
4.6.2 介電層微結構觀察.....................................................................................243
第五章 結果討論........................................................................................................ 307
5.1 了解鈦酸鋇添加受體氧化物之外質缺陷 (Extrinsic defect) 濃度的變化... 307
5.1.1 鈦酸鋇的順磁共振 (Electron Paramagnetic Resonance, EPR) 光譜中 g =
1.974 與g = 2.004 的定義....................................................................................307
5.1.2 EPR 分析鈦酸鋇添加受體氧化物之外質缺陷 (Extrinsic defect) 濃度的變
化...........................................................................................................................309
5.2 靠近鎳電極附近微結構觀察........................................................................... 325
5.3 拉曼光譜與TOPASR ...................................................................................... 334
5.3.1 ω5a = 178 cm-1 與ω5b = 185 cm-1 成對出現..............................................334
5.3.2 結晶相混和與多層陶瓷電容器的關係.....................................................336
5.4 光集中技術判斷其對稱性............................................................................... 336
第六章 結論................................................................................................................ 338
第七章 未來研究方向................................................................................................ 340
參考文獻...................................................................................................................... 343
附錄............................................................................................................................. 354
參考文獻 References
1. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Dielectric Properties, pp.913-974 in
Introduction to Ceramics, 2nd ED., J. Wiley, N. Y., 1976.
2. B. Jaffee, W. R. Cook, and H. Jaffee, Peizoelectirc Ceramics, Academic Press, N. Y.,
1971
3. D. E. Rase, and R. Roy, “Phase Equilibrium in the System BaO-TiO2,” J. Am. Ceram.
Soc., 38 [3] 102-113 (1955).
4. H. M. O'Bryan, Jr., and J. Thomson, ”Phase Equilibria in the TiO2-Rich Region of the
system BaO-TiO2,” J. Am. Ceram. Soc., 57 [12] 522-26 (1974).
5. T. Negas, R. S. Roth, H. S. Parker, and D. Minor, “Subsolidus Phase Relations in the
BaTiO3-TiO2 System,” J. Sol. Stst. Chem., 9, 297-307 (1974).
6. J. A. E. Javadpour, “Raman Spectroscopy of Higher Titanate Phase in the Barium
Titanate-Titanium Oxide System,” J. Am. Ceram. Soc., 71 [4] 206-213 (1988).
7. J. J. Ritter, R. S. Roth, and J. E. Blendell, “Alkoxide Precursor Synthesis and
Characterization of Phases in Barium-Titanium Oxide System ,” J. Am. Ceram. Soc., 69
[2] 155-162 (1986).
8. K. W. Kirby, “Phase Relations in the Barium Titanate-Titanium Oxide System,” J. Am.
Ceram. Soc., 74 [4] 206-213 (1988).
9. S. Lee, and C. A. Randall, “Modified Phase Diagram for the Barium Dioxide System
for the Ferroelectric Barium Titanate,”J. Am. Ceram. Soc., 90 [8] 2589-2595 (2007).
10. H. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode-Multilayer Ceramic
Capacitor:Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42 [1] 1-15
(2003).
11. http://www.tdk.com/pdf/mcannon_fopamt_apec_mar2011.pdf
12. D. E. McCauley, “Design, Structure-Property Relationships and Implications of a
344
BaTiO3 Based Dielectric Formulation for High Performance Capacitors,” Doctoral
Thesis, Tokyo Institute of Technology, Japan, 2006.
13. Y. Taho, and V. O. Ronald, “Robust Design for a Multilayer Ceramic Capacitor
Screen-Printing Process Case Study,” J. Eng. Design, 15 447-57 (2004).
14. A. F. Devonshire,”Theory of Barium Titanate-part I” Phil.Mag., 40 [com] 1043-63
(1949).
15. Roland and S. Strawn, ”Investigation and Application of PLZT ferroelectric
ceramic” ph.D. Thesis [1976] Arizona state university.
16. T. Malis, and H. Gleiter,” Investigation of the structure of Ferroelectric Domain
boundaries by Transmission Electron Microscopy,” J. Appl. Phys., 47 [12] 5195-5200
(1976).
17. A. J. Moulson, and J. M. Herbert, Electroceramics–Materials, properties,
applications, Chapman and Hall, London, 1990
18. B. S. Rawal, M. Kahn, and W. R. Buessem, “Grain Core-Grain Shell
Structure in Barium Titanate-Based Dielectrics”; pp. 172-88 in Advances in
Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited
by L. M. Levinson. American Ceramic Society, Columbus, OH, 1981.
19. H. Y. Lu, J. S. Bow, and W. H. Deng, “Core-Shell Structures in ZrO2-Modif ied
BaTiO3 Ceramic,” J. Am. Ceram. Soc., 73 [12] 3562-68 (1990).
20. D. Henning, and G. Rosenstein, “Temperature-Stable Dielectrics Based on
Chemically Inhomogeneous BaTi03,” J. Am. Ceram. Soc., 67 [4] 249-54 (1984).
21. D. Hennings, A. Schell, and G. Simon, “Diffuse Ferroelectric Phase Transitions in
Ba(Til-yZry)03 Ceramics,” J. Am. Ceram. Soc., 65 [11] 539-44 (1982).
22. C. A. Randall, D. J. Barber, R. W. Whatmore, and P. Groves, “A TEM Study of
Ordering in Perovskite Pb(Sc1/2Ta1/2)O3,” J. Mat. Sci., 21 [12] 4456-4462 (1986).
23. T. Tsurumi, and Y. Hoshino “Diffuse Phase Transition of Tantalum-Bearing
345
Strontium Barium Miobate,” J. Am. Ceram. Soc.,72 [2] 278-84 (1989).
24. L. Benguigui, and K. Bethe, “Diffused Phase Transition in BaxSr1-xTiO3 Single
Crystal,” J. Appl. Phys., 47 [7] 2787-91 (1976).
25. G. King, E. Goo, T. Yamanoto, and K. Okazaki, “Crystal Structure and defects of
Order (Pb1-xCax)TiO3,” J. Am.Ceram. Soc, 71 [6] 450-60 (1988).
26. R. Clarke, and J. C. Burfoot, “The diffuse phase transition in potassium strontium
Niobate,” Ferroelectrics, 8 [1] 505-6 (1974).
27. P. Murugaraj, T. R. N. Kutty, and M. S. Rao, “Diffuse Phase Transformation in
Neodymium-Doped BaTiO3 Ceramics,” J. Mat. Sci., 21 [10] 3521-27 (1986).
28. N. M. Molokhia, M. A. A Issa, and S. A. Naser, “Dielectric and X-ray Diffraction
Studies of Barium Titanate Doped with Yttrium,” J. Am. Ceram. Soc., 67 [4] 289-91
(1984).
29. T. R. N. Kutty, and P. Murugaraj, “Phase Relations and Dielectric Properties of
BaTiO3 Ceramics Heavily Substituted with Neodymium,” J. Mat. Sci., 22 [10] 3652-64
(1987).
30. A. Yamaji, Y. Enomoto, K. Kinoshita, and T. Murakami, “Preparation,
Characterization, and Properties of Dy-Doped Small-Grained BaTiO3 Ceramics,” J. Am.
Ceram. Soc., 60 [3-4] 97-101 (1977).
31. S. H. Yoon, S. H. Kwon, and K. H. Hur, “Dielectric relaxation behavior of acceptor
(Mg)-doped BaTiO3,” J. Appl. Phys., 109 [8] 084117-8 (2011).
32. X. L. Dong, and S. Kojima, “Dielectric and resonance frequency investigations of
phase transitions in Nb-doped PZT95/5 and 75/25 ceramics,” J. Phys:Condens. Matter,
9 [11] L171-7 (1997).
33. H. S. Kim, J. H. Kim, W. K. Choo, and N. Setter, “Phase transition behaviors of
(1–x)Pb(Yb1/2Nb1/2)O3–xBa(Yb1/2Nb1/2)O3 ceramics,” J. Eur. Ceram. Soc., 21 [10-11]
1665-68 (2001).
346
34. N. Setter, and L. E. Cross, “The contribution of structural disorder to
diffuse phase transitions in ferroelectrics,” J. Mater. Sci., 15 [10] 2478-82 (1980).
35. N. Setter, and L. E. Cross, “The role of Bsite cation disorder in diffuse phase
transition behavior of perovskite ferroelectrics,” J. Appl. Phys., 51 [8] 4356-60 (1980).
36. C. G. F. Stenger, and A. J. Burggraff, “Order-Disorder Reactions in the Ferroelectric
Perovskites Pb(Sc1/2Nb1/2)O3 and Pb(Sc1/2Ta1/2)O3 I. Kinetics of the Ordering Process,”
Phys. Stat. sol., 61 [1] 275-285 (1980).
37. G. A. Smolenskii, V. A. Isupov, A. I. Aganovskaya, and S. N. Popov, “Ferroelectric
Perovskites Pb(Sc1/2Nb1/2)O3 and Pb(Sc1/2Ta1/2)O3,” Sov. Phys. Solid. State, 2 [11]
2584-94 (1961).
38. W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of
High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc., 49 [1] 33-36
(1966).
39. H. T. Martirena, and J. C. Burfoot, “Grain-size effects on properties of some
ferroelectric ceramics,” J. Phys. C: Solid State Phys., 7 [11] 3182-92 (1974).
40. W. R. Buessem, L. E. Cross, and A. K. Goswami, “Effect of Two-Dimensional
Pressure on the Permittivity of Fine- and Coarse-Grained Barium Titanate,” J. Am.
Ceram. Soc., 49 [1] 36-39 (1966).
41. D. Hennings, “Barium Titanate Based Ceramic Materials for Dielectric Use,” Int. J.
High Technology Ceramics 3 [2] 91-111 (1987).
42. K. Kinoshita, and A. Yamaji, “Grainsize effects on dielectric properties in barium
titanate ceramics,” J. Appl. Phys., 47 [1] 371-3 (1976).
43. E. A. Little, “Dynamic Behavior of Domain Walls in Barium Titanate,” Phys. Rev.,
98 [4] 978-989 (1955).
44. S. Y. Cheng, J. Shieh, N. J. Ho, and H. Y. Lu, “Phase-transformation-induced
microstructure in lead-free ferroelectric ceramics based on
347
(Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3,” Phil. Mag. 91 [31] 4013-32 (2011).
45. I. Burn and G. H. Maher, “High resistivity BaTiO3 ceramics sintered in CO-CO2
atmospheres,” J. Mater. Sci., 10 [4] 633-40 (1975).
46. H. J. Hagemann, and H. Ihrig, “Valence change and phase stability of 3d doped
BaTiO3 annealed in oxygen and hydrogen,” Phys. Rev. B., 20 [9] 3871-78 (1979).
47. Y. H. Han, J. B. Appleby, and D. M. Smyth, “Calcium as an Acceptor Impurity in
BaTiO3,,” J. Am. Ceram. Soc., 70 [2] 96-100 (1987).
48. D. Hennings, and H. Schreinemacher, “Ca-acceptors in Dielectric Ceramics Sintered
in Reducive Atmospheres,” J. Eur. Ceram. Soc., 15 [8] 795-800 (1995).
49. R. Waser, “dc Electrical Degradation of Perovskite-Type Titanates: I, Ceramics,” J.
Am. Ceram. Soc., 73 [6] 1645-53 (1987).
50. E. Loh, “A Model of dc Leakage in Ceramic Capacitors,” J. Appl. Phys., 53 [9]
6229-35 (1982).
51. H. Neumann, and G. Arlt, “Maxwell-Wagner Relaxation and Degradation of SrTiO3
and BaTiO3 Ceramics,” Ferroelecrrics, 69 [1] 179-86 (1986).
52. J. Rodel, and G. Tomandl, “Degradation of Mn-doped BaTiO3 Ceramic under a High
dc Electric Field,” J. Mater. Sci., 19 [11] 3515-23 (1984).
53. K. Lehovec, and G. A. Shirn, “Conductivity Injection and Extraction in
Polycrystalline Barium Titanate,” J. Appl. Phys., 33 [6] 2036-44 (1962).
54. B. McChesney, P. K. Gallagher, and F.V. DiMarcello, “Stabilized Barium Titanate
Ceramics for Capacitor Dielectrics,” J. Am. Ceram. Soc., 46 [5] 197-202 (1963).
55. R. Waser, T. Baiatu, and K. H. Hardtl, “dc Electrical Degradation of
Perovskite-Type Titanates:II, Single Crystals,” J. Am. Ceram. Soc., 73 [6] 1654-62
(1990).
56. H. Chazono, and H. Kishi, “Sintering Characteristics in the BaTiO3–Nb2O5–Co3O4
Ternary System:II, Stability of So-called Core–Shell Structure,” J. Am. Ceram. Soc., 83
348
[1] 101-106 (2000).
57. H. Chazono, and H. Kishi, “dc-Electrical Degradation of the BT-Based Material for
Multilayer Ceramic Capacitor with Ni internal Electrode:Impedance Analysis and
Microstructure,” 40 [9B] 5624-5629 (2001).
58. H. D. Park, J. D. Nance, M. S. H. Chu, and Y. Avniel, ‘‘Multilayer Ceramic
Chip Capacitors with High Reliability Compatible with Nickel Electrodes’’; US
Patent No. 6,185,087, Feburary 6, 2001.
59. G. Y. Yang, G. D. Lian, E. C. Dickey, and C. A. Randall, “Oxygen nonstoichiometry
and dielectric evolution of BaTiO3. Part II—
insulation resistance degradation under applied dc bias,” J. Appl. Phys., 96 [12] 7500-08
(2004).
60. Y. C. Wu, C. Y. Chen, and H. Y. Lu, “Dislocation Loops in Pressureless-Sintered
Undoped BaTiO3 Ceramics,” J. Am. Ceram. Soc., 89 [7] 2213-19 (2006).
61. H. W. Lee, ‘‘Effects of MgO-Doping on the Microstructure Development of
BaTiO3 Ceramics,” MS Thesis, National Sun Yat-Sen University, Taiwan, 2008.
62. Y. C. Wu, D. E. McCauley, M. S. H. Chu, and H. Y. Lu, “The {111} Modulated
Domains in t-BaTiO3,” J. Am. Ceram. Soc., 89 [9] 2702-09 (2006).
63. J. Jeong, and Y. H. Han, “Effects of MgO-Doping on Electrical Properties and
Microstructure of BaTiO3,

Jpn. J. Appl. Phys., 43 [8A] 5373-77 (2004).
64. G. A. Smolensky, “Ferroelctrics with Diffuse Phase Transition,” Ferroelectrics, 53
[1] 129-35 (1984).
65. V. S. Tiwari, and D. Pandey, “Structure and Properties of (Ba,Ca)CO3 Precursors: II,
Diffuse Phase Transition Behavior,” 77 [7] 1819-24 (1994).
66. L. E. Cross, “Relaxor Ferroelectrics,” Ferroelectrics, 76 [1] 241-67 (1987).
67. T. Nagai, K. Iijima, H.J. Hwang, M. Sando, T. Sekino, and K. Niihara, “Effect of
MgO Doping on the Transformations of BaTiO3,” J. Am. Ceram. Soc., 83 [1] 107-12
349
(2000).
68. Z. Q. Zhuang, M. P. Harmer, D. M. Smyth, and R. E. Newnham, “The Effect of
Octahedrally-Coordinated Calcium on the Ferroelectric Transition of BaTiO3,”
Mater. Res. Bull., 22, [10] 1329–35 (1987).
69. 1C. H. Perry, and D. B. Hall, “Temperature Dependence of the Raman Spectrum
of BaTiO3,” Phys. Rev. Lett., 15 [17] 700–702 (1965).
70. Y. C. Wu, S. F. Wang, D. E. McCauley, M. S. H. Chu, and H. Y. Lu, “Dielectric
Behavior and Second Phases in X7R-Formulated BaTiO3 Sintered in Low-Oxygen
Partial Pressures,” 90 [9] 2926-34 (2007).
71. R. Munikoti, and P. Dhar, “Highly Accelerated Life Testing (HALT) for
Multilayer Ceramic Capacitor Qualification,” IEEE Trans. Comp., Hybrids, Manu. Tech.
11 [4] 1988.
72. B. Toby, “R Factors in Rietveld Analysis: How Good is Good Enough?,” Powder
Diffr., 21 [1] 67-70 (2006).
73. http://www.phys.ncyu.edu.tw/~cad/Topas.pdf
74. http://www.bio.fju.edu.tw/excel/content05/html/50b.htm
75. W. H. Brown, and T. Poon, Introduction to Organic Chemistry, John Wiley and Sons
Inc, N. J., 2005
76. http://www.nscric.nthu.edu.tw/Other/epr/epr.html
77. D. T. Burns, and B. D. Flockhart, “Application of Quantitative EPR,” Phil. Trans. R.
Soc. Lond. A, 333 [1628] 37-48 (1990).
78. D. B. Williams, and C. B. Carter, Transmission electron microscopy, Plenum press,
New York, 1996.
79. P. E. Champness, Electron Diffraction in the Transmission Electron Microscope,
Guildford, U. K., 2001.
80. M. Tanaka, M. Terauchi, K. Tsuda, and K. Saitoh, Convergent-Beam Electron
350
Diffraction IV, JEOL Ltd., Tokyo, Japan, 2002. pp. 323.
81. B. F. Buxton, J. A. Eades, J. W. Steeds, and G. M. Rackham, “The Symmetry of
Electron Diffraction Zone Axis Patterns,” Phil. Trans. R. Soc. London, Series A, Math.
Phys. Sci., 281 [1301] 171-94 (1976).
82. J. W. Steeds, Convergent beam electron diffraction. In:Introduction to Analytical
Electron Microscopy, Plenum Press, New York, pp. 387-422.
83. M. Tanaka, M. Terauchi, K. Tsuda, and K. Saitoh, Convergent-Beam Electron
Diffraction IV, JEOL Ltd., Tokyo, Japan, 2002. pp. 315.
84. U. D. Ventkateswaran, V. M. Naik, and R. Naik, “High-Pressure Raman Studies of
Polycrystalline BaTiO3,” Phys. Rev. B, 58 [21] 14256-60 (1998).
85. D. A. Tenne, and X. Xi, “Raman Spectroscopy of Ferroelectric Thin Films and
Superlattice,” J. Am. Ceram. Soc., 91 [6] 1820-34 (2008).
86. J. D. Freire, and R. S. Katiyar, “Lattice Dynamics of Crystals with Tetragonal
BaTiO3 Structure,” Phys. Rev. B, 37 [4] 2074-85 (1988).
87. C. H. Perry, and D. B. Hall, “Temperature Dependence of the Raman Spectra of
BaTiO3,” Phys. Rev. Lett., 15 [17] 700-2 (1965).
88. Y. Shiratori, C. Pithan, J. Dornseiffer, and R. Waser, “Raman Scattering Studies in
Nanocrystalline BaTiO3, Part I: Isolated Particles and Aggregates,” J. Raman Spectro.,
38 [10] 1288-99 (2007).
89. N. Baskaran, A. Ghule, C. Bhongale, R. Murugan, and H. Chang, “Phase
Transformation Studies of Ceramic BaTiO3 Using Thermo-Raman and Dielectric
Constant Measurements,” J. Appl. Phys., 91 [12] 10038-43 (2002).
90. A. K. Sood, N. Chandrabhas, D. V. S. Muthu, and A. Jayaraman, “Phonon Interface
in BaTiO3: High Pressure Raman Study,” Phys. Rev. B, 51 [14] 8892-96 (1995).
91. M. L. Jenkins, and M. A. Kirk, Characterization of Radiation Damage by
Transmission Electron Microscopy, pp. 6–26. Institute of Physics, Bristol, U.K.,
351
2001.
92. D. F. K. Henning, C. Metzmacher, and B. S. Schreinemacher “Defect Chemistry and
Microstructure of Hydrothermal Barium Titanate,” J. Am. Ceram. Soc., 84 [1] 179-82
(2001).
93. D. Hennings, and S. Schreinemacher, “Characterization of Hydrothermal Barium
Titanate,” J. Eur. Ceram. Soc., 9 [1] 41-46 (1992).
94. M. Tanaka, M. Terauchi, K. Tsuda, and K. Saitoh, Convergent-Beam Electron
Diffraction III, JEOL Ltd., Tokyo, Japan, 2002. pp. 50.
95. http://en.wikipedia.org/wiki/Crystal_system
96.http://www.materials.ac.uk/elearning/matter/Crystallography/3dCrystallography/brav
ais.html
97. F. D. Bloss, Crystallography and Crystal Chemistry. Holt Rinehart and Winston,
New York, NY, 1971, 173pp.
98. T. Kolodiazhnyi, and A. Petric, “Analysis of point defects in polycrystalline BaTiO3
by electron paramagnetic resonance,” J. Phys. Chem. Solids., 64 [6] 953-60 (2003).
99. D. Makovec, Z. Samardzija, U. Delalut, D. Kolar, “Defect structure and phase
relations of highly lanthanum-doped barium titanate,” J. Am. Ceram. Soc., 78 [8]
2193–2197 (1995).
100. T. R. N. Kutty, P. Murugaraj, and N. S. Gajbhiye, “Activation of trap centres in
PTC BaTiO3,” Mat. Let., 2 [5A] 396-400 (1984).
101. W. Heywang, “Bariumtitanate Als sperrschichthalbleiter,” Solid-State Electronics.,
3 [1] 51-8 (1961).
102. B. A. Rotenberg , Y. L. Danilyuk, E. I. Gindin, and V. G. Prokhvatilov, “Electrical
and radiospectroscopic investigations of barium titanate with admixtures of oxides of
trivalent elements.,” Sov. Phys. Solid State., 7 2465-69 (1966)
103. Y. H. Hu, M. P. Harmer, and D. M. Smyth, “Solubility of BaO in BaTiO3,” J. Am.
352
Ceram. Soc., 68 [7] 372-376 (1995).
104. N. H. Chan, R. K. Sharma and D. M. Smyth., “Nonstoichiometry in Undoped
BaTiO3,” J. Am. Ceram. Soc., 64 [9] 556-562 (1981).
105. R. Wernicke, “The Influence of Kinetic Processes on the Electrical Conductivity
of Donor-Doped BaTiO3 Ceramics,” phys. stat. sol. (a) 47 [1] 139-44 (1978).
106. G. Koschek and E. Kubalek, “Micro-Scaled Spectral-Resolved
Cathodoluminescence of Grains in Bariumtitanate Ceramics,”
phys. stat. sol. (a), 79 [1] 131-7 (1983).
107. Jeong and Han, “Effects of MgO-Doping on Electrical Properties and
Microstructure of BaTiO3,” Jpn. J. Appl. Phys., 43 [8A] 5373-77 (2004).
108. T. R. Welberry and A. G. Christy, “A Paracrystalline Description of Defect
Distributions in Wustite, Fe1-xO,” J. Soli. Stat. Chem., 117 [2] 398–406 (1995).
109. V. Bheemineni, E. K. Chang, M. Lal, M. P. Harmer, and D. M. Smyth,
‘‘Suppression of Acceptor Solubilities in BaTiO3 Densified in Highly Reducing
Atmospheres,’’ J. Am. Ceram. Soc., 77 [12] 3173–6 (1994).
110. Y. C. Huang, S. S. Chen, and W. H. Tuan, ‘‘Process Window of BaTiO3–Ni
Ferroelectric–Ferromagnetic Composites,’’ J. Am. Ceram. Soc., 90 [5] 1438–43
(2007).
111. N. Choudhury, E.J. Walter, A.I. Kolesnikov, and C.K. Loong, “Large Phonon band
gap in SrTiO3 and the vibrational signature of ferroelectricity in ATiO3 perovskites:
First-Pprinciples Lattice Dynamics and Inelastic Neutron Scattering,” Phys. Rev. B, 77
[13] 134111-1-10 (2008).
112. M. Osada, M. Kakihana, S. Wada, T. Noma, and W.S. Cho, “Broken Symmetry in
Low-Temperature BaTiO3 Phases: Strain Effects Probed by Raman Scattering,” Appl.
Phys. Lett., 75 [21] 3393-95 (1999).
113. C. Wu, and H.Y. Lu, “Planar Defects in Metastably Retained Hexagonal BaTiO3:
353
α-Type Extended Stacking Faults,” Philos. Mag., 84 [32] 3467-81 (2006).
114. D.I. Woodward, and I.M. Reaney, “Electron Diffraction of Tilted Perovskites,”
Acta Cryst., B61 [4] 387-99 (2005).
115. K.A. Muller, and W. Berlinger, “Microscopic Probing of Order-Disorder Versus
Displacive Behavior in BaTiO3 by Fe3+ EPR,” Phys. Rev. B, 34 [9] 6130-36 (1986).
116. W. Heywang, “Semiconducting BaTiO3,” J. Mater. Sci., 6 [9] 1214-26 (1971).
117. Y. M. Chiang, and T. Takagi, “Grain Boundary Chemistry of BaTiO3 and SrTiO3: I,
High-Temperature Equilibrium Space Charge,” J. Am. Ceram. Soc., 73 [11] 3278-85
(1990).
118. Y. M. Chiang, and T. Takagi, “Grain Boundary Chemistry of BaTiO3 and SrTiO3: II,
Origin of Potential Barrier in Positive-Temperature-Coefficient Thermistors,” J. Am.
Ceram. Soc., 73 [11] 3286-91 (1990).
119. C. L. Jia, S. B. Mi, K. Urban, I. Vrejiou, M. Alexe, and D. Hesse, “Atomic-Scale
Study of Electric Dipoles Near Charged and Uncharged Domain Walls in Ferroelectric
Films,” Nature Mater., 7 [1] 57-61 (2008).
120. R. Waser, and R. Hagenbeck, “Grain Boundaries in Dielectric and Mix-Conducting
Ceramics,” Acta mater., 48 [4] 797-825 (2000).
121. T. Kolodiazhyni, and A. Pectrič, “Effect of pO2 on Bulk and Grain Boundary
Resistance of n-Type BaTiO3 at Cryogenic Temperatures,” J. Am. Ceram. Soc., 86 [9]
1554-59 (2003).
122. R. Crouths, “UPS and LEED Studies of BaTiO3 and SrTiO3 Surfaces,” phys. stat.
sol. (b), 100 [1] 135-48 (1980).
123. K. H. Yang, T. Y. Chen, N. J. Ho, and H. Y. Lu, “In-Gap States in Wide-Band-Gap
SrTiO3 Analyzed by Cathodoluminescence,” J. Am. Ceram. Soc., 94 [6] (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code