Responsive image
博碩士論文 etd-0806112-234113 詳細資訊
Title page for etd-0806112-234113
論文名稱
Title
液晶與共振腔發光二極體整合之波長可調紅外光源之研究
Wavelength Tunable Infrared Light Source based on Liquid Crystal-Integrated Resonant-Cavity Light Emitting Diodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-28
繳交日期
Date of Submission
2012-08-06
關鍵字
Keywords
液晶、光激發、Fabry-Perot共振腔、近紅外發光二極體
Liquid Crystal, Near-Infrared LED, Fabry-Perot cavity, Optical pumping
統計
Statistics
本論文已被瀏覽 5698 次,被下載 625
The thesis/dissertation has been browsed 5698 times, has been downloaded 625 times.
中文摘要
在此研究中,我們製作出了電控波長可調的共振腔發光二極體(Resonant-Cavity Light Emitting Diode,RCLED)元件。它是由主動層材料為AlGaInAs的量子井結構和被填入液晶的Fabry-Pérot共振腔所結合而成。而本實驗分別填入向列型液晶以及膽固醇液晶,比較兩者在光致螢光光譜上的差異。當使用向列型液晶時,液晶的光學異向性使沿著非尋常光方向的模態能藉由電壓來調變且調變範圍可到58奈米,得到的光譜與偏振有關。反之,若填入膽固醇液晶則每個方向的偏振光皆感受到相同折射率的變化,因此共振模態與偏振無關;但其折射率的變化較小,所以調變範圍只有41奈米。此外,我們也模擬了向列型液晶樣品,並將理論值與實驗值作比對。本實驗是由波長為1064奈米的雷射光激發半導體元件並在室溫下觀測到的結果。
Abstract
In this study, we fabricated an electrically wavelength-tunable resonant-cavity light emitting diode (RCLED). It was achieved by the combination of an AlGaInAs quantum well structure with an intra-cavity liquid crystal material. In the phase modulator layer, we used nematic liquid crystal (NLC) and cholesteric liquid crystal (CLC), respectively, comparing their difference in the infrared-spectrum. When inserting NLC, the anisotropic properties of liquid crystal enable continuous tuning of mode emission along the extraordinary direction and provide a 58 nm tuning range. The optical characteristics of this device are polarization dependent. On the contrary, the CLC-based device is polarization independent because any polarization of incident light experiences the same averaged refractive index. However, the phase difference of CLC is less than NLC, only a 41 nm tuning range of this sample. We also simulated and discussed experimental results of NLC-based RCLED. The optical pumping of the active region is realized by a CW laser at 1064 nm wavelength and observed at room temperature.
目次 Table of Contents
摘要..................................................................................i
Abstract...........................................................................ii
致謝................................................................................iii
目錄................................................................................iv
圖目錄............................................................................vi
表目錄............................................................................ix

第一章 序.........................................................................1
第二章 簡介.....................................................................2
2.1液晶簡介...................................................................2
2.1.1 何謂液晶.............................................................2
2.1.2 液晶的分類.........................................................3
2.2液晶的物理特性.......................................................9
2.2.1液晶的秩序參數..................................................9
2.2.2折射率異向性....................................................10
2.2.3介電係數異向性................................................13
2.2.4液晶的彈性連續體理論.....................................15
2.2.5黏滯係數異向性................................................16
2.3半導體雷射簡介.....................................................17
2.4發光二極體............................................................21
2.5共振腔式發光二極體(RCLED)...............................22
第三章 理論介紹...........................................................24
3.1 Fabry-Pérot共振腔...............................................24
3.2反射鏡...................................................................30
3.2.1布拉格反射鏡...................................................30
3.2.2金屬反射鏡.......................................................32
3.3活性層...................................................................32
3.4注入液晶的共振腔式發光二極體元件(LC-RCLED.33
3.5光致螢光理論........................................................35
3.6 V-T curve理論......................................................35
第四章 實驗方法與過程................................................37
4.1 LC-RCLED樣品製備............................................37
4.1.1材料介紹..........................................................37
4.1.2使用設備..........................................................40
4.1.3元件製作過程...................................................44
4.2實驗量測裝置........................................................48
4.2.1光致螢光光譜量測............................................48
4.2.2光致螢光的偏振態量測.....................................49
4.2.3 V-T curve量測.................................................50
第五章 結果與討論.......................................................51
5.1 向列型液晶注入RCLED.......................................51
5.1.1 NLC-RCLED光致螢光光譜之電控分析...........51
5.1.2 NLC-RCLED之相位分析.................................58
4.1.3 NLC-RCLED光致螢光光譜之模擬分析...........60
5.2膽固醇液晶注入RCLED........................................66
5.2.1 CLC-RCLED光致螢光光譜之電控分析...........66
第六章 總結與未來展望...............................................69
參考文獻.....................................................................71
參考文獻 References
[1] M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., 31, 1671-1672 (1995).

[2] D. Vakhshoori, P. Tayebati, C.-C. Lu, M. Azimi, P. D. Wang, J.-H. Zhou, and E. Canoglu, “2mW CW singlemode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range,” Electron. Lett., 35, 900-901 (1999).

[3] S. Jatta, B. Kögel, M. Maute, K. Zogal, F. Riemenschneider, G. Böhm, M.-C. Amann, and P. Meißner, “Bulk-micromachined VCSEL at 1.55 μm with 76-nm single-mode continuous tuning range,” IEEE Photon. Technol. Lett., 21, 1822-1824 (2009).

[4] Vivien Verbrugge, J.-L. de Bougrenet de la Tocnaye, and L. Dupont, “C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material,” Opt. Commun., 215, 353-359 (2003).

[5] C. Levalloisa, B. Caillaud, J.-L. de Bougrenet de la Tocnaye, L. Dupont, A. Le Corre, H. Folliot, O. Dehaese, and S. Loualiche, “Long-wavelength vertical-cavity surface-emitting laser using an electro-optic index modulator with 10 nm tuning range,” Appl. Phys. Lett., 89, 011102 (2006).

[6] O. Castany, C. Paranthoen, C. Levallois, A. Shuaib, J. P. Gauthier, N. Chevalier, O. Durand, L. Dupont, and A. Le Corre, “Demonstration of a 34 nm monolithic continuously tunable VCSEL at 1.55 μm combined with liquid crystal,” 23rd International Conference on Indium Phosphide and Related Materials (2011).

[7] E. F. Schubert, Y.-H. Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett., 60, 921-923 (1992).

[8] F. Reinitzer, “Beiträge zur Kenntniss des Cholesterins,” Monatsh. Chem., 9, 421-441 (1888).

[9] S. Singh, and D.-A. Dunmur, “Liquid Crystal:Fundamentals,” World Scientific, Singapore (1990).

[10] P. G. de Gennes, and J. Prost, “The Physics of Liquid Crystals,” Clarendon Press, Oxford (1993).

[11] Pochi Yeh, and Claire Gu, “Optics of Liquid Crystal Displays,” John Wiley & Sons (1999).

[12] 田民波 著, 林怡欣 校定, “TFT 液晶顯示原理與技術,” 五南圖書出版公司 (2008).

[13] 陳文政, “摻雜奈米粒子及偶氮染料的液晶薄膜之光配向研究及應用,” 國立中山大學, 光電工程研究所 (2009).

[14] 蔡逸泰, “摻雜奈米粒子及偶氮染料的液晶薄膜之預傾角調變研究,” 國立中山大學, 光電工程研究所 (2010).

[15] 陳彥翰, “與偏振無關之可調式藍相液晶Fabry-Pérot濾波器之研究,” 國立中山大學, 光電工程研究所 (2011).

[16] Amnon Yariv, “Optical Electronics in Modern Communications,” Oxford University Press (1997).

[17] L. M. Blinov, and V. G. Chigrinov, “Electro-optic Effects in Liquid Crystal Materials,” New York : Springer-Verlag (1994).

[18] J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys., 96, 19-24 (2004).

[19] Anthony E. Siegman, “Lasers,” University Science Books (1986).

[20] Kelin J. Kuhn, “Laser Engineering,” Prentice Hall (1998).

[21] 鍾德元, “以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究,” 國立中央大學, 光電科學與工程研究所 (2008).

[22] 廖舜章, “面射型雷射的製程研究,” 國立臺灣大學, 電機工程研究所 (2001).

[23] H. E. Li, and K. Iga, “Vertical-cavity surface-emitting laser devices,” New York : Springer-Verlag (2003).

[24] J. F. Seurin, “Harnessing light for high-power applications,” SPIE Newsroom. DOI : 10.1117/2.1200905.1638 (2009).

[25] 施敏, “半導體元件物理學,” 國立交通大學出版社 (2009).

[26] J. Hecht, “The quest for practical green laser diodes,” Laser focus world, 46, 65-67 (2010).

[27] 李國盛, “共振腔發光二極體的製作與特性量測,” 國立交通大學, 電子物理研究所 (2001).

[28] 顏正泰, “氮化鎵共振腔發光二極體之特性研究,” 國立成功大學, 微電子工程研究所 (2006).

[29] 李季達, “RCLED搶攻短距離塑膠光纖通訊市場,” 光連雙月刊第42期 (2002).

[30] E. F. Schubert, “Light Emitting Diodes,” Cambridge University Press (2006).

[31] S.O. Kasap, “Optoelectronics and Photonics:Principles and practices,” Prentice Hall (2002).

[32] 劉鵠儀, “摻雜偶氮材料於藍相液晶之光學調控研究,” 國立中山大學, 光電工程研究所 (2010).

[33] Iam-Choon Khoo, and Shin-Tson Wu, “Optics and Nonlinear Optics of Liquid Crystals,” World Scientific (1993).

[34] J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID, 13, 1017-1026 (2005).

[35] N. A. Riza, and S. A. Khan, “Liquid-crystal-deflector based variable fiber-optic attenuator,” Appl. Opt., 43, 3449-3455 (2004).

[36] J. Oberhammer, F. Niklaus, and G. Stemme, “Selective wafer level adhesive bonding with benzocyclobutene,” in: Proceedings of the Micromechanics and Microengineering Europe, Cork, Ireland, 54-57 (2001).

[37] A. Y. Val’kov, L. A. Zubkov, A. P. Kovshik, and V. P. Romanov, “Selective scattering of polarized light by an oriented nematic liquid crystal,” JETP Lett., 40, 1064-1067 (1984).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code