Responsive image
博碩士論文 etd-0806114-213044 詳細資訊
Title page for etd-0806114-213044
論文名稱
Title
吳郭魚(Oreochromis mossambicus × O. niloticus)在亞硝酸暴露下的熱休克反應
Regulation of heat shock response in tilapia (Oreochromis mossambicus × O. niloticus) exposed to nitrite stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
46
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-21
繳交日期
Date of Submission
2014-09-09
關鍵字
Keywords
熱休克反應、肝臟、鰓、亞硝酸、吳郭魚、肌肉
nitrite, heat shock response, tilapia, gill, liver, muscle
統計
Statistics
本論文已被瀏覽 5658 次,被下載 79
The thesis/dissertation has been browsed 5658 times, has been downloaded 79 times.
中文摘要
亞硝酸是自然水生環境中即存在的陰離子,當環境中硝化與反硝化作用受影響而失衡時,亞硝酸則較為容易累積。在養殖方面,集約化的養殖方式將會快速的產生含氮廢物,如此便將提高了累積亞硝酸的風險。由過去的研究已知亞硝酸會對魚類造成許多生理功能的干擾,所以藉由分子層次的反應,來探討魚類面臨非致死且無行為異常之亞硝酸濃度時的逆境生理反應,則是相當重要的課題。當細胞遇到環境逆境時,將藉由活化熱休克反應(heat shock response; HSR)來進行細胞防衛的機制,本實驗利用吳郭魚做為研究物種,探討四個主要參與調節熱休克反應之基因:heat shock factor 1 (HSF1)、inducible heat shock protein 70 (HSP70)、heat shock cognate 70-1 (HSC70-1)、HSC70-2,在鰓、肝臟與肌肉中的mRNA表現量,以及在面臨亞硝酸曝露時的調節反應。實驗結果顯示四個基因在鰓上皆有最高的表現量,推測是由於魚類的鰓是直接與外界環境接觸的且具有多重生理功能的器官,因此其細胞防衛機制的調節較為活化。另一方面,在面臨亞硝酸逆境刺激時,僅發現在肌肉其HSP70的表現量下降之外,熱休克反應調節基因在三個研究之器官皆有顯著性上升的趨勢。進一步也發現HSC70-2於三個器官的變化幅度最大,為吳郭魚面臨亞硝酸逆境時反應最靈敏之基因。綜合以上實驗結果證實熱休克反應在魚類面臨亞硝酸刺激時是重要的抗逆境反應機轉,且具有潛力可運用於環境逆境的評估上。
Abstract
Nitrite is a naturally existing anion in aquatic environments and imbalance of nitrification and denitrification occurs, leading to nitrite accumulation. Moreover, intensive recirculating aquaculture systems lead to high risk of elevation of nitrite concentration that causes the stressful effects on aquaculture species. However, studies on stress physiological responses of aquatic animals at molecular level upon nitrite stress are limited. In this study, an aquaculture species, tilapia (Oreochromis mossambicus), were used to examine mRNA expression of heat shock factor 1 (HSF1), inducible heat shock protein 70 (HSP70), heat shock cognate 70-1 (HSC70-1) and HSC70-2 in gills, liver and muscle to explore the regulatory response of cellular heat shock response (HSR), a crucial cytoprotective mechanism, to nitrite stress in fish. Our data showed that mRNA abundance of all studied genes was highest in gills. It reflected that the cytoprotection is highly demanding in fish gills since they directly contact external environment and possess multi-physiological functions. Furthermore, nitrite exposure significantly induced the transcript levels of HSF1 and all HSP70 isoforms in studied tissues except muscle HSP70. Importantly, our finding revealed that HSC70-2 is the most sensitive gene to nitrite exposure in various organs among the studied genes. To our knowledge, this is the first study to investigate HSF1 and three HSP70 isoforms simultaneously in fish exposed to nitrite stress. The present study provided the insight of cytoprotective role of HSR into nitrite stress as well as the potential ways to evaluate the risk of chronic nitrite exposure in fish.
目次 Table of Contents
目 錄
論文審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
壹、前言 1
貳、材料和方法 5
2.1 魚種及飼養環境 5
2.2 亞硝酸暴露實驗 5
2.3 實驗目標的收集 5
2.4 總核醣核酸萃取和反轉錄實驗(total RNA extraction and Reverse Transcription) 6
2.5 即時定量聚合酶連鎖反應(Real-time PCR) 6
2.6 統計方法 7
參、結果 8
3.1 熱休克反應調節基因於實驗的目標組織的表現量 8
3.2 吳郭魚面臨亞硝酸暴露時其鰓上熱休克反應調節基因的表現量變化 8
3.3 亞硝酸暴露對於吳郭魚肝臟的熱休克反應調節基因表現量的影響 8
3.4 亞硝酸暴露對於吳郭魚肌肉的熱休克反應調節基因表現量的影響 9
肆、討論 10
參考文獻 15
附圖 23
附表 27
附錄 28
參考文獻 References
Alcaraz, G., Espina, S., 1997. Scope for Growth of Juvenile Grass Carp (Ctenopharyngodon idella) Exposed to Nitrite. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 116, 85-88.
Au, D., 2004. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Marine Pollution Bulletin 48, 817-834.
Avilez, I.M., Aguiar, L.H.d., Altran, A.E., Moraes, G., 2004. Acute toxicity of nitrite to matrinxã, Brycon cephalus (Günther, 1869), (Teleostei-Characidae). Ciência Rural 34, 1753-1756.
Basu, N., Todgham, A., Ackerman, P., Bibeau, M., Nakano, K., Schulte, P., Iwama, G.K., 2002. Heat shock protein genes and their functional significance in fish. Gene 295, 173-183.
Bukau, B., Weissman, J., Horwich, A., 2006. Molecular chaperones and protein quality control. Cell 125, 443-451.
Carpenter, C.M., Hofmann, G.E., 2000. Expression of 70 kDa heat shock proteins in antarctic and New Zealand notothenioid fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 125, 229-238.
Clark, M.S., Peck, L.S., 2009. HSP70 Heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Marine Genomics 2, 11-18.
Colt, J., Ludwig, R., Tchobanoglous, G., Cech Jr, J.J., 1981. The effects of nitrite on the short-term growth and survival of channel catfish, Ictalurus punctatus. Aquaculture 24, 111-122.
Cui, M., Zhang, Q., Yao, Z., Zhang, Z., 2011. Molecular cloning and expression analysis of heat‐shock protein 70 in orange‐spotted grouper Epinephelus coioides following heat shock and Vibrio alginolyticus challenge. Journal of Fish Biology 79, 486-501.
Dang, W., Hu, Y.-h., Zhang, M., Sun, L., 2010. Identification and molecular analysis of a stress-inducible Hsp70 from Sciaenops ocellatus. Fish & Shellfish Immunology 29, 600-607.
Deane, E.E., Woo, N., 2007. Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost Sparus sarba. Aquatic Toxicology 82, 85-93.
Deane, E.E., van de Merwe, J.P., Hui, J.H., Wu, R.S., Woo, N., 2014. PBDE-47 exposure causes gender specific effects on apoptosis and heat shock protein expression in marine medaka, Oryzias melastigma. Aquatic Toxicology 147, 57-67.
Doleželová, P., Mácová, S., Pištěková, V., Svobodová, Z., Bedáňová, I., Voslářová, E., 2011. Nitrite toxicity assessment in Danio rerio and Poecilia reticulata. Acta Veterinaria Brno 80, 309-312.
Ekwe, O., Nwakpa, J., Nweze, B., 2012. Biochemical effects of nitrite on methemoglobin and plasma nitrite concentration in three tropical freshwater fishes. Ozean Journal of Applied Sciences 5, 25-31.
Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews 85, 97-177.
Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology 61, 243-282.
Ferreira da Costa, O.T., dos Santos Ferreira, D.J., Presti Mendonça, F.L., Fernandes, M.N., 2004. Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-term exposure to nitrite. Aquaculture 232, 627-636.
Frances, J., Allan, G.L., Nowak, B.F., 1998. The effects of nitrite on the short-term growth of silver perch (Bidyanus bidyanus). Aquaculture 163, 63-72.
Fulda, S., Gorman, A.M., Hori, O., Samali, A., 2010. Cellular stress responses: cell survival and cell death. International Journal of Cell Biology 2010.
Garcia-Santos, S., Vargas-Chacoff, L., Ruiz-Jarabo, I., Varela, J., Mancera, J., Fontainhas-Fernandes, A., Wilson, J., 2011. Metabolic and osmoregulatory changes and cell proliferation in gilthead sea bream (Sparus aurata) exposed to cadmium. Ecotoxicology and Environmental Safety 74, 270-278.
Goldberg, A.L., 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899.
Grosell, M., Jensen, F.B., 2000. Uptake and effects of nitrite in the marine teleost fish Platichthys flesus. Aquatic Toxicology 50, 97-107.
Hightower, L.E., 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, 191-197.
Huertas, M., Gisbert, E., Rodrıguez, A., Cardona, L., Williot, P., Castello-Orvay, F., 2002. Acute exposure of Siberian sturgeon (Acipenser baeri,Brandt) yearlings to nitrite: median-lethal concentration (LC50) determination, haematological changes and nitrite accumulation in selected tissues. Aquatic Toxicology 57, 257-266.
Iwama, G.K., Vijayan, M.M., Forsyth, R.B., Ackerman, P.A., 1999. Heat shock proteins and physiological stress in fish. American Zoologist 39, 901-909.
Iwama, G., Afonso, L., vijayan, MM (2006). Stress in Fishes. The Physiology of Fishes, 319-342.
Jensen, F.B., 1990. Nitrite and red cell function in carp: control factors for nitrite entry, membrane potassium ion permeation, oxygen affinity and methaemoglobin formation. Journal of Experimental Biology 152, 149-166.
Jensen, F., 1996. Physiological effects of nitrite in teleosts and crustaceans. Seminar Series-Society for Experimental Biology. Cambridge University Press, pp. 169-186.
Jensen, F.B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 135, 9-24.
Jing, J., Liu, H., Chen, H., Hu, S., Xiao, K., Ma, X., 2013. Acute effect of copper and cadmium exposure on the expression of heat shock protein 70 in the Cyprinidae fish Tanichthys albonubes. Chemosphere 91, 1113-1122.
Johnston, I.A., Macqueen, D.J., Watabe, S., 2008. Molecular biotechnology of development and growth in fish muscle. Fisheries for Global Welfare and Environment, 5th World Fisheries Congress, 241–262.
Kiang, J.G., Tsokos, G.C., 1998. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacology & Therapeutics 80, 183-201.
Kroupova, H., Machova, J., Svobodova, Z., 2005. Nitrite influence on fish: a review. Veterinární Medicína 50, 461.
Kroupova, H., Machova, J., Piackova, V., Blahova, J., Dobsikova, R., Novotny, L., Svobodova, Z., 2008. Effects of subchronic nitrite exposure on rainbow trout (Oncorhynchus mykiss). Ecotoxicology and Environmental Safety 71, 813-820.
Kültz, D., 2005. Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology. 67, 225-257.
Lewis Jr, W.M., Morris, D.P., 1986. Toxicity of nitrite to fish: a review. Transactions of the American Fisheries Society 115, 183-195.
Lin, S., Wu, C., 1996. Electrochemical removal of nitrite and ammonia for aquaculture. Water Research 30, 715-721.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCt Method. Methods 25, 402-408.
Lückstädt, C., Schill, R.O., Focken, U., Köhler, H.-R., Becker, K., 2004. Stress protein HSP70 response of Nile Tilapia Oreochromis niloticus niloticus (Linnaeus, 1758) to induced hypoxia and recovery. Verhandlungen der Gesellschaft für Ichthyologie Band 4, 137-141.
Martinez, C.B., Souza, M.M., 2002. Acute effects of nitrite on ion regulation in two neotropical fish species. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 133, 151-160.
Ming, J., Xie, J., Xu, P., Liu, W., Ge, X., Liu, B., He, Y., Cheng, Y., Zhou, Q., Pan, L., 2010. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish & Shellfish Immunology 28, 407-418.
Molina, A., Biemar, F., Müller, F., Iyengar, A., Prunet, P., Maclean, N., Martial, J.A., Muller, M., 2000. Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Letters 474, 5-10.
Oliveira, S.R.d., Souza, R.T.Y.B.d., Nunes, É.d.S.S., Carvalho, C.S.M.d., Menezes, G.C.d., Marcon, J.L., Roubach, R., Ono, E.A., Affonso, E.G., 2008. Tolerance to temperature, pH, ammonia and nitrite in cardinal tetra, Paracheirodon axelrodi, an amazonian ornamental fish. Acta Amazonica 38, 773-779.
Padmini, E., Vijaya Geetha, B., Usha Rani, M., 2009. Pollution induced nitrative stress and heat shock protein 70 overexpression in fish liver mitochondria. Science of The Total Environment 407, 1307-1317.
Padmini, E., 2010. Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins. Reviews of Environmental Contamination and Toxicology Volume 206. Springer, pp. 1-27.
Palmisano, A.N., Winton, J.R., Dickhoff, W.W., 2000. Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Marine Biotechnology 2, 329-338.
Rabergh, C., Airaksinen, S., Soitamo, A., Bjorklund, H., Johansson, T., Nikinmaa, M., Sistonen, L., 2000. Tissue-specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs in response to heat stress. Journal of Experimental Biology 203, 1817-1824.
Pirkkala, L., Nykänen, P., Sistonen, L., 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal 15, 1118-1131.
Philips, S., Laanbroek, H.J., Verstraete, W., 2002. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Biotechnology 1, 115-141.
Roberts, R., Agius, C., Saliba, C., Bossier, P., Sung, Y., 2010. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. Journal of Fish Diseases 33, 789-801.
Rodrigues, R.V., Schwarz, M.H., Delbos, B.C., Sampaio, L., 2007. Acute toxicity and sublethal effects of ammonia and nitrite for juvenile cobia Rachycentron canadum. Aquaculture 271, 553-557.
Sampaio, L., Wasielesky, W., Miranda-Filho, K.C., 2002. Effect of salinity on acute toxicity of ammonia and nitrite to juvenile Mugil platanus. Bulletin of Environmental Contamination and Toxicology 68, 668-674.
Sherwood, L., Klandorf, H., Yancey, P.H., 2005. Animal Physiology: From Genes to Organisms. Thomson/Brooks/Cole.
Siikavuopio, S.I., Sæther, B.-S., 2006. Effects of chronic nitrite exposure on growth in juvenile Atlantic cod, Gadus morhua. Aquaculture 255, 351-356.
Sprague, J., 1971. Measurement of pollutant toxicity to fish—III: Sublethal effects and “safe” concentrations. Water Research 5, 245-266.
Sun, S., Ge, X., Xuan, F., Zhu, J., Yu, N., 2014. Nitrite-induced hepatotoxicity in Bluntsnout bream (Megalobrama amblycephala): The mechanistic insight from transcriptome to physiology analysis. Environmental Toxicology and Pharmacology 37, 55-65.
Svobodová, Z., Máchová, J., Drastichová, J., Groch, L., Lusková, V., Poleszczuk, G., Velíšek, J., Kroupová, H., 2005a. Haematological and biochemical profiles of carp blood following nitrite exposure at different concentrations of chloride. Aquaculture Research 36, 1177-1184.
Svobodova, Z., Machova, J., Poleszczuk, G., Hůda, J., Hamáčková, J., Kroupova, H., 2005b. Nitrite poisoning of fish in aquaculture facilities with water-recirculating systems. Acta Veterinaria Brno 74, 129-None.
Tang, C.-H., Lai, D.-Y., Lee, T.-H., 2012. Effects of salinity acclimation on Na+ /K+–ATPase responses and FXYD11 expression in the gills and kidneys of the Japanese eel (Anguilla japonica). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 163, 302-310.
Tang, C.-H., Lee, T.-H., 2013. Early response of protein quality control in gills is associated with survival of hypertonic shock in Mozambique tilapia. PloS ONE 8, e63112.
Tsan, M.-F., Gao, B., 2004. Heat shock protein and innate immunity. Cellular & Molecular Immunology 1, 274-279.
Wang, W.-X., Rainbow, P.S., 2007. Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environmental Chemistry 3, 395-399.
Weber, T.E., Bosworth, B.G., 2005. Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish. Aquaculture 246, 483-492.
Weirich, C.R., Riche, M.A., 2006. Tolerance of juvenile black sea bass Centropristis striata to acute ammonia and nitrite exposure at various salinities. Fisheries Science 72, 915-921.
Wickner, S., Maurizi, M.R., Gottesman, S., 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888-1893.
Xing, H., Li, S., Wang, X., Gao, X., Xu, S., Wang, X., 2013. Effects of atrazine and chlorpyrifos on the mRNA levels of HSP70 and HSC70 in the liver, brain, kidney and gill of common carp (Cyprinus carpio L.). Chemosphere 90, 910-916.
Yanbo, W., Wenju, Z., Weifen, L., Zirong, X., 2006. Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiology and Biochemistry 32, 49-54.
Yildiz, H., Köksal, G., Borazan, G., Benli, C., 2006. Nitrite‐induced methemoglobinemia in Nile tilapia, Oreochromis niloticus. Journal of Applied Ichthyology 22, 427-426.
Zeng, C., Romano, N., 2013. Nitrogenous wastes: often overlooked pollutants in aquatic environments. Journal of Marine Science Research and Development 3, 1-1.
Zhang, A., Zhou, X., Wang, X., Zhou, H., 2011. Characterization of two heat shock proteins (Hsp70/Hsc70) from grass carp (Ctenopharyngodon idella): Evidence for their differential gene expression, protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 159, 109-114.
Zhang, L., Sun, C., Ye, X., Zou, S., Lu, M., Liu, Z., Tian, Y., 2014. Characterization of four heat-shock protein genes from Nile tilapia (Oreochromis niloticus) and demonstration of the inducible transcriptional activity of Hsp70 promoter. Fish Physiology and Biochemistry 40, 221-233.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code