Responsive image
博碩士論文 etd-0806115-133110 詳細資訊
Title page for etd-0806115-133110
論文名稱
Title
八種膠原蛋白表現對口腔頰黏膜鱗狀細胞癌新生和預後的影響
The Impact of Collagens Related Proteins’ Expression on the Tumorigenesis and Prognosis of Buccal Mucosal Squamous Cell Carcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-30
繳交日期
Date of Submission
2015-09-08
關鍵字
Keywords
免疫組織化學染色法、腫瘤新生、預後、膠原蛋白、頰黏膜鱗狀細胞癌、口腔鱗狀細胞癌
immunohistochemistry, prognosis, tumorigenesis, collagen, buccal mucosal squamous cell carcinoma, Oral squamous cell carcinoma
統計
Statistics
本論文已被瀏覽 5732 次,被下載 32
The thesis/dissertation has been browsed 5732 times, has been downloaded 32 times.
中文摘要
口腔癌是世界上最常見的十大癌症之一。口腔鱗狀細胞癌是其中最常見的癌症型態,儘管它可以經手術切除以及放射線治療來控制,但癌細胞轉移至淋巴結以及遠端器官可能會導致治療失敗和患者死亡。近來,我們利用次世代定序分析結果發現,八支膠原蛋白相關基因 (COL1A1、COL1A2、COL3A1、COL4A1、COL5A1、COL5A2、COL6A1和COL11A1) 可能與口腔鱗狀細胞癌的腫瘤新生與惡化相關。因此,本研究目的為驗證八支膠原蛋白相關基因的訊息RNA及蛋白質的表現量與口腔鱗狀細胞癌的腫瘤新生和惡化的關聯性。我們使用定量即時聚合酶連鎖反應評估八支膠原蛋分別於23位頰黏膜鱗狀細胞癌患者以及11位舌頭鱗狀細胞癌患者其配對組織(腫瘤比正常)中訊息RNA的表現量;再利用免疫組織化學染色法評量八支膠原蛋白於484位口腔鱗狀細胞癌患者 (其中包含176位頰黏膜鱗狀細胞癌、246位舌頭鱗狀細胞癌及62位唇鱗狀細胞癌)在組織微陣列中蛋白表現量。結果發現,在頰黏膜鱗狀細胞癌組織中,所有膠原蛋白的訊息RNA及蛋白表現程度顯著高於腫瘤鄰近正常組織,除了COL5A2的訊息RNA與蛋白質是正常組織高於腫瘤組織。我們由免疫組織化學染色結果得知,頰黏膜鱗狀細胞癌組織中的COL1α1、COL1α2、COL4α1、COL5α1、COL5α2、COL6α1和COL11α1之蛋白表現中位數分別為4、2、2、4、3、3和3。此外在舌頭鱗狀細胞癌、唇鱗狀細胞癌和口腔鱗狀細胞癌組織中的COL5α1和COL5α2之蛋白表現中位數分別為5和2、2和3以及4和2。我們也發現在頰黏膜鱗狀細胞癌中,高表現的COL1α1會有比較差的細胞分化,然而高表現的COL1α2會有比較小的腫瘤,高表現的COL5α2不會有淋巴結侵犯。在口腔鱗狀細胞癌中,高表現的COL5α1會有比較差的細胞分化 (特別是頰黏膜鱗狀細胞癌)、較晚期的腫瘤 (唇鱗狀細胞癌除外) 以及有淋巴結侵犯,然而高表現的COL5α2與比較好的細胞分化相關 (特別是頰黏膜鱗狀細胞癌)。在經過校正臨床病理因素之後發現,在舌頭鱗狀細胞癌患者中,COL5α1蛋白表現量高和較差的特定疾病存活率 (校正後存活調整風險 [AHR] 1.96, 95%信賴區間1.27-3.01, p=0.002) 以及無疾病存活率具顯著性相關 ([AHR] 1.96, 95%信賴區間1.28-3.01, p=0.002);COL5α2蛋白表現量高則和頰黏膜鱗狀細胞癌患者較好的特定疾病存活率具顯著性相關 ([AHR] 0.49, 95%信賴區間 0.29-0.84, p=0.009)。本研究之結論顯示,COL1α1、COL1α2、COL4α1、COL5α1、COL5α2、COL6α1和COL11α1可能可作為口腔鱗狀細胞癌 (尤其是頰黏膜鱗狀細胞癌) 的腫瘤發生之生物標誌,而COL5α1和COL5α2可能是口腔鱗狀細胞癌,尤其是在頰黏膜鱗狀細胞癌和舌頭鱗狀細胞癌,的一個預後生物標誌。
Abstract
Oral cancer is one of the top ten most common cancers worldwide. Oral squamous cell carcinoma (SCC) is the most common type of oral cancer. Although it can be controlled by surgical excision and radiotherapy, metastasis to the lymph nodes and distant organs, may lead to treatment failure and patient death. Recently, our next-generation sequencing assay identified 8 collagen-related genes’ expression (COL1A1, COL1A2, COL3A1, COL4A1, COL5A1, COL5A2, COL6A1, and COL11A1) involved in tumorigenesis and progression of oral SCC. The purpose of this study was to validate the association of the mRNA and protein expression of 8 collagen-related genes with the development and prognosis of oral SCC. The mRNA expression levels of 8 collagen-related proteins were assayed by real-time PCR in N-T paired tissues of 23 buccal mucosal SCC and 11 tongue SCC patients. The protein expression levels of 8 collagen-related proteins were examined by immunohistochemistry (IHC) in tissue microarray slides of 484 oral SCC patients, including 176 buccal mucosal, 246 tongue, and 62 lip patients. The mRNA and protein expression levels of 8 collagen-related proteins were significantly increased in tumor tissues as compared to the paired tumor adjacent normal tissue, except mRNA and protein expression of COL5A2 in buccal mucosal SCC. Our IHC results showed that the median expression levels of COL1α1, COL1α2, COL4α1, COL5α1, COL5α2, COL6α1, and COL11α1 were 4, 2, 2, 4, 3, 3, and 3 in 176 buccal mucosal SCC specimens, respectively. In addition, the median expression levels of COL5α1 and COL5α2 were 5 and 2, 2 and 3, as well as 4 and 2 in 246 tongue SCC specimens, 62 lip SCC specimens, and 484 oral SCC speicements, respectively. In buccal mucosal SCC, we found that a higher level of COL1α1 was correlated with higher grade of cell differentiation. However, higher level of COL1α2 was correlated with small size of tumor and higher level of COL5α2 was correlated with absence of lymph node invasion. In oral SCC, the increased expression of COL5α1 was correlated with higher grade of cell differentiation (especially for buccal mucosal SCC), late stage of disease (except for lip SCC), and involvement of lymph node (except for lip SCC). However, the increased expression of COL5α2 was correlated with lower grade of cell differentiation (especially for buccal mucosal SCC). After adjustment of clinicopathologic outcomes, tongue SCC patients with the elevated COL5α1 expression had worse disease-specific survival (adjusted hazard ratio [AHR] 1.96, 95%CI 1.27-3.01, p=0.002) and disease-free survival ([AHR] 1.96, 95%CI 1.28-3.01, p=0.002). However, buccal mucosal SCC patients with increased COL5α2 expression had better disease-specific survival ([AHR] 0.49, 95%CI 0.29-0.84, p=0.009). In conclusion, COL1α1, COL1α2, COL4α1, COL5α1, COL5α2, COL6α1, and COL11α1 could be biomarkers for tumorigenesis in oral SCC, especially for buccal mucosal SCC. Additionally, COL5α1 and COL5α2 might be prognostic biomarkers for oral SCC, especially for buccal mucosal SCC and tongue SCC.
目次 Table of Contents
論文審定書-----------------------------------------------------------------------------------------i
致謝--------------------------------------------------------------------------------------------------ii
Abbreviations--------------------------------------------------------------------------------------iv
Abstract in Chinese -------------------------------------------------------------------------v
Abstract in English ---------------------------------------------------------------------------- vii
Contents -------------------------------------------------------------------------------------- x
Introduction ------------------------------------------------------------------------------------- 01
1. Oral cancer--------------------------------------------------------------------------------01
2. Collagen-------------------------------------------------------------------------------- 01
3. Collagen family------------------------------------------------------------------------ 02
4. The mechanisms of Collagens on tumorigenesis or metastasis-------------------03
5. Eight collagen related proteins and cancer------------------------------------------- 05
A. Type I collagen alpha 1-----------------------------------------------------------05
B. Type I collagen alpha 2--------------------------------------------------------06
C. Type III collagen alpha 1-------------------------------------------------------06
D. Type IV collagen alpha 1-----------------------------------------------------07
E. Type V collagen alpha 1-------------------------------------------------------08
F. Type V collagen alpha 2---------------------------------------------------------09
G. Type VI collagen alpha 1-----------------------------------------------------10
H. Type XI collagen alpha 1-----------------------------------------------------11
The specific aims of this study -----------------------------------------------------------------12
Materials and Methods --------------------------------------------------------------------------13
Results ---------------------------------------------------------------------------------------------23
Section 1. Screening of 8 collagens in oral squamous cell carcinoma, including buccal mucosal squamous cell carcinoma and tongue squamous cell carcinoma
A. Transcriptome profiling of oral squamous cell carcinoma----------23
B. Validation of the mRNA expression levels of 8 collagens in the paired tissues of oral squamous cell carcinoma-----------------------23
Section 2. Seven collagens’ protein expression and buccal mucosal squamous cell carcinoma
A. Validation of the protein expression levels of 7 collagens in normal tissues, tumor adjacent normal tissues, and tumor tissues---------24
B. The demographic and clinicopathologic characteristics and their impact on survival of patients with buccal mucosal squamous cell carcinoma ----------------------------------------------------------------26
C. The association of the expression levels of 7 collagens with the clinicopathological outcomes and survival of buccal mucosal squamous cell carcinoma patients-------------------------------------27
Section 3. Type V collagen in oral squamous cell carcinoma, including buccal mucosal squamous cell carcinoma, tongue squamous cell carcinoma, and lip squamous cell carcinoma
A. The protein expression level of type V collagen in normal tissues, tumor adjacent normal tissues, and tumor tissues-------------------30
B. The demographic and clinicopathologic characteristics and their impact on survival of patients with tongue squamous cell carcinoma ---------32
C. The demographic and clinicopathologic characteristics and their impact on survival of patients with lip squamous cell carcinoma -----------33
D. The demographic and clinicopathologic characteristics and their impact on survival of patients with oral squamous cell carcinoma -----------35
E. The association of the expression levels of COL5α1 and COL5α2 with the clinicopathologic outcomes and survival of tongue squamous cell carcinoma patients-----------------------------------------------------------36
F. The association of the expression levels of COL5α1 and COL5α2 with the clinicopathologic outcomes and survival of lip SCC patients-------------------------------------------------------------------------37
G. The association of the expression levels of COL5α1 and COL5α2 with the clinicopathologic outcomes and survival of oral SCC patients---------------------------------------------------------------------38
Discussions---------------------------------------------------------------------------------------- 49
Conclusions--------------------------------------------------------------------------------------- 48
References ------------------------------------------------------------------------------------- 49
Tables ------------------------------------------------------------------------------------------- 59
Figures ---------------------------------------------------------------------------------------- 82
參考文獻 References
Allen, J.M., Zamurs, L., Brachvogel, B., Schlotzer-Schrehardt, U., Hansen, U., Lamande, S.R., Rowley, L., Fitzgerald, J., and Bateman, J.F. (2009). Mice lacking the extracellular matrix protein WARP develop normally but have compromised peripheral nerve structure and function. J Biol Chem 284, 12020-12030.
Arao, S., Masumoto, A., and Otsuki, M. (2000). Beta1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas 20, 129-137.
Aumailley, M., and Timpl, R. (1986). Attachment of cells to basement membrane collagen type IV. J Cell Biol 103, 1569-1575.
Barkan, D., and Chambers, A.F. (2011). beta1-integrin: a potential therapeutic target in the battle against cancer recurrence. Clin Cancer Res 17, 7219-7223.
Berchtold, S., Grunwald, B., Kruger, A., Reithmeier, A., Hahl, T., Cheng, T., Feuchtinger, A., Born, D., Erkan, M., Kleeff, J., et al. (2015). Collagen type V promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Cancer Lett 356, 721-732.
Bernardi, P., and Bonaldo, P. (2008). Dysfunction of mitochondria and sarcoplasmic reticulum in the pathogenesis of collagen VI muscular dystrophies. Ann N Y Acad Sci 1147, 303-311.
Birk, D.E. (2001). Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32, 223-237.
Boudreau, N., and Bissell, M.J. (1998). Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol 10, 640-646.
Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L.A., Knuechel, R., and Kirchner, T. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98, 10356-10361.
Brabletz, T., Spaderna, S., Kolb, J., Hlubek, F., Faller, G., Bruns, C.J., Jung, A., Nentwich, J., Duluc, I., Domon-Dell, C., et al. (2004). Down-regulation of the homeodomain factor Cdx2 in colorectal cancer by collagen type I: an active role for the tumor environment in malignant tumor progression. Cancer Res 64, 6973-6977.
Breuls, R.G., Klumpers, D.D., Everts, V., and Smit, T.H. (2009). Collagen type V modulates fibroblast behavior dependent on substrate stiffness. Biochem Biophys Res Commun 380, 425-429.
Burnier, J.V., Wang, N., Michel, R.P., Hassanain, M., Li, S., Lu, Y., Metrakos, P., Antecka, E., Burnier, M.N., Ponton, A., et al. (2011). Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene 30, 3766-3783.
Burns-Cox, N., Avery, N.C., Gingell, J.C., and Bailey, A.J. (2001). Changes in collagen metabolism in prostate cancer: a host response that may alter progression. J Urol 166, 1698-1701.
Carvalho, A.L., Ikeda, M.K., Magrin, J., and Kowalski, L.P. (2004). Trends of oral and oropharyngeal cancer survival over five decades in 3267 patients treated in a single institution. Oral oncology 40, 71-76.
Chen, P., Cescon, M., and Bonaldo, P. (2013). Collagen VI in cancer and its biological mechanisms. Trends Mol Med 19, 410-417.
Cheng, J.S., Dubal, D.B., Kim, D.H., Legleiter, J., Cheng, I.H., Yu, G.Q., Tesseur, I., Wyss-Coray, T., Bonaldo, P., and Mucke, L. (2009). Collagen VI protects neurons against Abeta toxicity. Nat Neurosci 12, 119-121.
Chernousov, M.A., Stahl, R.C., and Carey, D.J. (2001). Schwann cell type V collagen inhibits axonal outgrowth and promotes Schwann cell migration via distinct adhesive activities of the collagen and noncollagen domains. J Neurosci 21, 6125-6135.
Chong, I.W., Chang, M.Y., Chang, H.C., Yu, Y.P., Sheu, C.C., Tsai, J.R., Hung, J.Y., Chou, S.H., Tsai, M.S., Hwang, J.J., et al. (2006). Great potential of a panel of multiple hMTH1, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncol Rep 16, 981-988.
Colombatti, A., Bonaldo, P., Ainger, K., Bressan, G.M., and Volpin, D. (1987). Biosynthesis of chick type VI collagen. I. Intracellular assembly and molecular structure. J Biol Chem 262, 14454-14460.
Dahlman, T., Lammerts, E., Bergstrom, D., Franzen, A., Westermark, K., Heldin, N.E., and Rubin, K. (2002). Collagen type I expression in experimental anaplastic thyroid carcinoma: regulation and relevance for tumorigenicity. Int J Cancer 98, 186-192.
Duarte, A.H., Colli, S., Alves-Pereira, J.L., Martins, M.P., Sampaio, F.J., and Ramos, C.F. (2012). Collagen I and III and metalloproteinase gene and protein expression in prostate cancer in relation to Gleason score. Int Braz J Urol 38, 341-354; discussion 354-345.
Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J., and Liddington, R.C. (2000). Structural basis of collagen recognition by integrin alpha2beta1. Cell 101, 47-56.
Engvall, E., Hessle, H., and Klier, G. (1986). Molecular assembly, secretion, and matrix deposition of type VI collagen. J Cell Biol 102, 703-710.
Fichard, A., Tillet, E., Delacoux, F., Garrone, R., and Ruggiero, F. (1997). Human recombinant alpha1(V) collagen chain. Homotrimeric assembly and subsequent processing. J Biol Chem 272, 30083-30087.
Fields, G.B. (2013). Interstitial collagen catabolism. J Biol Chem 288, 8785-8793.
Fischer, H., Stenling, R., Rubio, C., and Lindblom, A. (2001). Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis 22, 875-878.
Fitzgerald, J., Rich, C., Zhou, F.H., and Hansen, U. (2008). Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI). J Biol Chem 283, 20170-20180.
Fujita, A., Sato, J.R., Festa, F., Gomes, L.R., Oba-Shinjo, S.M., Marie, S.K., Ferreira, C.E., and Sogayar, M.C. (2008). Identification of COL6A1 as a differentially expressed gene in human astrocytomas. Genet Mol Res 7, 371-378.
Gara, S.K., Grumati, P., Urciuolo, A., Bonaldo, P., Kobbe, B., Koch, M., Paulsson, M., and Wagener, R. (2008). Three novel collagen VI chains with high homology to the alpha3 chain. J Biol Chem 283, 10658-10670.
Garrone, R., Lethias, C., and Le Guellec, D. (1997). Distribution of minor collagens during skin development. Microscopy Research and Technique 38, 407-412.
Hayashi, M., Nomoto, S., Hishida, M., Inokawa, Y., Kanda, M., Okamura, Y., Nishikawa, Y., Tanaka, C., Kobayashi, D., Yamada, S., et al. (2014). Identification of the collagen type 1 alpha 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer 14, 108.
Heino, J. (2007). The collagen family members as cell adhesion proteins. BioEssays : news and reviews in molecular, cellular and developmental biology 29, 1001-1010.
Hsu, H.H., Murasawa, Y., Qi, P., Nishimura, Y., and Wang, P.C. (2013). Type V collagen fibrils in mouse metanephroi. Biochem Biophys Res Commun 441, 649-654.
Hu, C., Dandapat, A., Sun, L., Khan, J.A., Liu, Y., Hermonat, P.L., and Mehta, J.L. (2008). Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 283, 10226-10231.
Hudson, B.G., Reeders, S.T., and Tryggvason, K. (1993). Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 268, 26033-26036.
Iyengar, P., Espina, V., Williams, T.W., Lin, Y., Berry, D., Jelicks, L.A., Lee, H., Temple, K., Graves, R., Pollard, J., et al. (2005). Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115, 1163-1176.
Kalluri, R. (2003). Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3, 422-433.
Kavitha, O., and Thampan, R.V. (2008). Factors influencing collagen biosynthesis. J Cell Biochem 104, 1150-1160.
Kern, A., Eble, J., Golbik, R., and Kuhn, K. (1993). Interaction of type IV collagen with the isolated integrins alpha 1 beta 1 and alpha 2 beta 1. Eur J Biochem 215, 151-159.
Kharaishvili, G., Simkova, D., Bouchalova, K., Gachechiladze, M., Narsia, N., and Bouchal, J. (2014). The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int 14, 41.
Kim, S.H., Lee, H.Y., Jung, S.P., Kim, S., Lee, J.E., Nam, S.J., and Bae, J.W. (2014). Role of secreted type I collagen derived from stromal cells in two breast cancer cell lines. Oncol Lett 8, 507-512.
Kirkland, S.C. (2009). Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br J Cancer 101, 320-326.
Kobel, M., Budianto, D., Schmitt, W.D., Borsi, L., Siri, A., and Hauptmann, S. (2005). Influence of various cytokines on adhesion and migration of the colorectal adenocarcinoma cell line HRT-18. Oncology 68, 33-39.
Lai, W.M., Chen, C.C., Lee, J.H., Chen, C.J., Wang, J.S., Hou, Y.Y., Liou, H.H., Chen, H.C., Fu, T.Y., Lee, Y.C., et al. (2013). Second primary tumors and myeloperoxidase expression in buccal mucosal squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 116, 464-473.
Lampe, A.K., and Bushby, K.M. (2005). Collagen VI related muscle disorders. J Med Genet 42, 673-685.
Lampe, A.K., Dunn, D.M., von Niederhausern, A.C., Hamil, C., Aoyagi, A., Laval, S.H., Marie, S.K., Chu, M.L., Swoboda, K., Muntoni, F., et al. (2005). Automated genomic sequence analysis of the three collagen VI genes: applications to Ullrich congenital muscular dystrophy and Bethlem myopathy. J Med Genet 42, 108-120.
Leemans, C.R., Tiwari, R., Nauta, J.J., van der Waal, I., and Snow, G.B. (1994). Recurrence at the primary site in head and neck cancer and the significance of neck lymph node metastases as a prognostic factor. Cancer 73, 187-190.
Liang, Y., Diehn, M., Bollen, A.W., Israel, M.A., and Gupta, N. (2008). Type I collagen is overexpressed in medulloblastoma as a component of tumor microenvironment. J Neurooncol 86, 133-141.
Lin, Z.Y., and Chuang, W.L. (2012). Genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma cells. Biomed Pharmacother 66, 454-458.
Liu, G., Sengupta, P.K., Jamal, B., Yang, H.Y., Bouchie, M.P., Lindner, V., Varelas, X., and Kukuruzinska, M.A. (2013). N-glycosylation induces the CTHRC1 protein and drives oral cancer cell migration. J Biol Chem 288, 20217-20227.
Liu, S.A., Tsai, W.C., Wong, Y.K., Lin, J.C., Poon, C.K., Chao, S.Y., Hsiao, Y.L., Chan, M.Y., Cheng, C.S., Wang, C.C., et al. (2006). Nutritional factors and survival of patients with oral cancer. Head Neck 28, 998-1007.
Lu, X.Z., Chen, W.T., and Zhang, C.P. (2011). [Investigation of mRNA expression of collagen genes in oral squamous cell carcinoma and paired normal tissue]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 31, 1197-1199.
Luparello, C., Schillaci, R., Pucci-Minafra, I., and Minafra, S. (1990). Adhesion, growth and cytoskeletal characteristics of 8701-BC breast carcinoma cells cultured in the presence of type V collagen. Eur J Cancer 26, 231-240.
Luparello, C., Sheterline, P., Pucci-Minafra, I., and Minafra, S. (1991). A comparison of spreading and motility behaviour of 8701-BC breast carcinoma cells on type I, I-trimer and type V collagen substrata. Evidence for a permissive effect of type I-trimer collagen on cell locomotion. J Cell Sci 100 ( Pt 1), 179-185.
Luparello, C., and Sirchia, R. (2005). Type V collagen regulates the expression of apoptotic and stress response genes by breast cancer cells. J Cell Physiol 202, 411-421.
Luther, D.J., Thodeti, C.K., Shamhart, P.E., Adapala, R.K., Hodnichak, C., Weihrauch, D., Bonaldo, P., Chilian, W.M., and Meszaros, J.G. (2012). Absence of type VI collagen paradoxically improves cardiac function, structure, and remodeling after myocardial infarction. Circ Res 110, 851-856.
Maekawa, R., Sato, S., Yamagata, Y., Asada, H., Tamura, I., Lee, L., Okada, M., Tamura, H., Takaki, E., Nakai, A., et al. (2013). Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PLoS One 8, e66632.
Markopoulos, A.K., Michailidou, E.Z., and Tzimagiorgis, G. (2010). Salivary markers for oral cancer detection. Open Dent J 4, 172-178.
Minafra, S., Luparello, C., Pucci-Minafra, I., Sobel, M.E., and Garbisa, S. (1992). Adhesion of 8701-BC breast cancer cells to type V collagen and 67 kDa receptor. J Cell Sci 102 ( Pt 2), 323-328.
Misawa, K., Kanazawa, T., Misawa, Y., Imai, A., Endo, S., Hakamada, K., and Mineta, H. (2011). Hypermethylation of collagen alpha2 (I) gene (COL1A2) is an independent predictor of survival in head and neck cancer. Cancer Biomark 10, 135-144.
Misuno, K., Liu, X., Feng, S., and Hu, S. (2013). Quantitative proteomic analysis of sphere-forming stem-like oral cancer cells. Stem Cell Res Ther 4, 156.
Murasawa, Y., Hayashi, T., and Wang, P.C. (2008). The role of type V collagen fibril as an ECM that induces the motility of glomerular endothelial cells. Exp Cell Res 314, 3638-3653.
Myllyharju, J., and Kivirikko, K.I. (2004). Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends in genetics : TIG 20, 33-43.
Oku, Y., Shimoji, T., Takifuji, K., Hotta, T., Yokoyama, S., Matsuda, K., Higashiguchi, T., Tominaga, T., Nasu, T., Tamura, K., et al. (2008). Identification of the molecular mechanisms for dedifferentiation at the invasion front of colorectal cancer by a gene expression analysis. Clin Cancer Res 14, 7215-7222.
Okuyama, K., Miyama, K., Mizuno, K., and Bachinger, H.P. (2012). Crystal structure of (Gly-Pro-Hyp)(9) : implications for the collagen molecular model. Biopolymers 97, 607-616.
Oue, N., Hamai, Y., Mitani, Y., Matsumura, S., Oshimo, Y., Aung, P.P., Kuraoka, K., Nakayama, H., and Yasui, W. (2004). Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res 64, 2397-2405.
Parekh, T.V., Wang, X.W., Makri-Werzen, D.M., Greenspan, D.S., and Newman, M.J. (1998). Type V collagen is an epithelial cell cycle inhibitor that is induced by and mimics the effects of transforming growth factor beta1. Cell Growth Differ 9, 423-433.
Pfaff, M., Aumailley, M., Specks, U., Knolle, J., Zerwes, H.G., and Timpl, R. (1993). Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI. Exp Cell Res 206, 167-176.
Pucciminafra, I., Luparello, C., Aquino, A., Basirico, L., Minafra, S., Franc, S., Yakovlev, L., and Shoshan, S. (1995). Of/Lb collagen promotes chemoinvasion of breast-cancer cells and directs epithelial-cell migration into granulation-tissue of experimental dermal wounds. Int J Oncol 6, 1015-1020.
Reis, P.P., Waldron, L., Perez-Ordonez, B., Pintilie, M., Galloni, N.N., Xuan, Y., Cervigne, N.K., Warner, G.C., Makitie, A.A., Simpson, C., et al. (2011). A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence. BMC cancer 11, 437.
Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor perspectives in biology 3, a004978.
Ruggiero, F., Champliaud, M.F., Garrone, R., and Aumailley, M. (1994). Interactions between cells and collagen V molecules or single chains involve distinct mechanisms. Exp Cell Res 210, 215-223.
Saelman, E.U., Nieuwenhuis, H.K., Hese, K.M., de Groot, P.G., Heijnen, H.F., Sage, E.H., Williams, S., McKeown, L., Gralnick, H.R., and Sixma, J.J. (1994). Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (alpha 2 beta 1-integrin). Blood 83, 1244-1250.
Schmalbach, C.E., Chepeha, D.B., Giordano, T.J., Rubin, M.A., Teknos, T.N., Bradford, C.R., Wolf, G.T., Kuick, R., Misek, D.E., Trask, D.K., et al. (2004). Molecular profiling and the identification of genes associated with metastatic oral cavity/pharynx squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 130, 295-302.
Souza, P., Rizzardi, F., Noleto, G., Atanazio, M., Bianchi, O., Parra, E.R., Teodoro, W.R., Carrasco, S., Velosa, A.P., Fernezlian, S., et al. (2010). Refractory remodeling of the microenvironment by abnormal type V collagen, apoptosis, and immune response in non-small cell lung cancer. Hum Pathol 41, 239-248.
Stefanovic, B. (2013). RNA protein interactions governing expression of the most abundant protein in human body, type I collagen. Wiley Interdiscip Rev RNA 4, 535-545.
Stracke, M.L., Murata, J., Aznavoorian, S., and Liotta, L.A. (1994). The role of the extracellular matrix in tumor cell metastasis. In Vivo 8, 49-58.
Sulpice, L., Rayar, M., Desille, M., Turlin, B., Fautrel, A., Boucher, E., Llamas-Gutierrez, F., Meunier, B., Boudjema, K., Clement, B., et al. (2013). Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology 58, 1992-2000.
Suresh, A., Vannan, M., Kumaran, D., Gumus, Z.H., Sivadas, P., Murugaian, E.E., Kekatpure, V., Iyer, S., Thangaraj, K., and Kuriakose, M.A. (2012). Resistance/response molecular signature for oral tongue squamous cell carcinoma. Disease markers 32, 51-64.
Tanjore, H., and Kalluri, R. (2006). The role of type IV collagen and basement membranes in cancer progression and metastasis. Am J Pathol 168, 715-717.
Tapper, J., Kettunen, E., El-Rifai, W., Seppala, M., Andersson, L.C., and Knuutila, S. (2001). Changes in gene expression during progression of ovarian carcinoma. Cancer Genet Cytogenet 128, 1-6.
Tuckwell, D.S., Ayad, S., Grant, M.E., Takigawa, M., and Humphries, M.J. (1994). Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support alpha 2 beta 1 binding, and mediation of adhesion to denatured collagen by a novel alpha 5 beta 1-fibronectin bridge. J Cell Sci 107 ( Pt 4), 993-1005.
Turashvili, G., Bouchal, J., Baumforth, K., Wei, W., Dziechciarkova, M., Ehrmann, J., Klein, J., Fridman, E., Skarda, J., Srovnal, J., et al. (2007). Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7, 55.
Turtoi, A., Blomme, A., Bianchi, E., Maris, P., Vannozzi, R., Naccarato, A.G., Delvenne, P., De Pauw, E., Bevilacqua, G., and Castronovo, V. (2014). Accessibilome of human glioblastoma: collagen-VI-alpha-1 is a new target and a marker of poor outcome. J Proteome Res 13, 5660-5669.
Unsold, C., Pappano, W.N., Imamura, Y., Steiglitz, B.M., and Greenspan, D.S. (2002). Biosynthetic processing of the pro-alpha 1(V)2pro-alpha 2(V) collagen heterotrimer by bone morphogenetic protein-1 and furin-like proprotein convertases. J Biol Chem 277, 5596-5602.
Wayner, E.A., and Carter, W.G. (1987). Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits. J Cell Biol 105, 1873-1884.
Wenstrup, R.J., Smith, S.M., Florer, J.B., Zhang, G., Beason, D.P., Seegmiller, R.E., Soslowsky, L.J., and Birk, D.E. (2011). Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J Biol Chem 286, 20455-20465.
Woodhouse, E.C., Chuaqui, R.F., and Liotta, L.A. (1997). General mechanisms of metastasis. Cancer 80, 1529-1537.
Wu, Y.H., Chang, T.H., Huang, Y.F., Huang, H.D., and Chou, C.Y. (2013). COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene.
Wu, Y.H., Chang, T.H., Huang, Y.F., Huang, H.D., and Chou, C.Y. (2014). COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 33, 3432-3440.
Yamaguchi, K., Matsuo, N., Sumiyoshi, H., Fujimoto, N., Iyama, K.I., Yanagisawa, S., and Yoshioka, H. (2005). Pro-alpha3(V) collagen chain is expressed in bone and its basic N-terminal peptide adheres to osteosarcoma cells. Matrix Biol 24, 283-294.
Yu, T., Wang, X.Y., Gong, R.G., Li, A., Yang, S., Cao, Y.T., Wen, Y.M., Wang, C.M., and Yi, X.Z. (2009). The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. Journal of experimental & clinical cancer research : CR 28, 64.
Zhu, Y.P., Wan, F.N., Shen, Y.J., Wang, H.K., Zhang, G.M., and Ye, D.W. (2015a). Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth. Oncotarget.
Zhu, Y.P., Wan, F.N., Shen, Y.J., Wang, H.K., Zhang, G.M., and Ye, D.W. (2015b). Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth. Oncotarget 6, 14488-14496.
Zhu, Z., Jiang, Y., Chen, S., Jia, S., Gao, X., Dong, D., and Gao, Y. (2011). An insertion/deletion polymorphism in the 3' untranslated region of type I collagen a2 (COL1A2) is associated with susceptibility for hepatocellular carcinoma in a Chinese population. Cancer Genet 204, 265-269.
Ziober, A.F., Falls, E.M., and Ziober, B.L. (2006a). The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head Neck 28, 740-749.
Ziober, A.F., Falls, E.M., and Ziober, B.L. (2006b). The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head & neck 28, 740-749.
Zou, X., Feng, B., Dong, T., Yan, G., Tan, B., Shen, H., Huang, A., Zhang, X., Zhang, M., Yang, P., et al. (2013). Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J Proteomics 94, 473-485.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code