Responsive image
博碩士論文 etd-0806116-110828 詳細資訊
Title page for etd-0806116-110828
論文名稱
Title
以免疫組織化學染色分析探討DLK-1在卵巢癌組織中之表現
Immunohistochemical study for DLK-1 expression in ovarian cancers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-05
繳交日期
Date of Submission
2016-09-06
關鍵字
Keywords
E-cadherin、Vimentin、CD44、DLK-1、卵巢癌
E-cadherin, Vimentin, CD44, DLK-1, Ovarian carcinoma
統計
Statistics
本論文已被瀏覽 5688 次,被下載 54
The thesis/dissertation has been browsed 5688 times, has been downloaded 54 times.
中文摘要
卵巢癌是一種預後不良以及有很高致死率的婦科惡性腫瘤,其中卵巢上皮細胞癌 (epithelial ovarian cancer) 佔了90%。卵巢上皮細胞癌普遍被認為起源於覆蓋在卵巢表面的表皮層。卵巢上皮細胞癌主要包含有:漿液性卵巢癌 (serous carcinoma)、子宮內膜樣卵巢癌 (endometrioid carcinoma)、黏液性卵巢癌 (mucinous carcinoma) 及亮細胞卵巢癌 (clear cell carcinoma)。

DLK-1是一種屬於類上皮生長因子家族的穿膜蛋白,會在胚胎發育時期大量表現,但仍存在於少數成人的不同種類組織上。DLK-1參與調節脂肪及骨細胞分化,在發育過程扮演重要角色。先前的研究發現,DLK-1在一些不同類型的腫瘤中,有異常的表現量,包括神經母細胞瘤、肝細胞癌、神經膠質瘤及前列腺癌,但在卵巢癌中的表現仍未被深入探討。CD44廣為人知是幹細胞標記,先前有研究指出,CD44在卵巢癌組織的表現量會大幅增加,因此被認為是卵巢癌的生物指標。Vimentin是第三型中間絲蛋白,大量表現於間質組織,並被認為是上皮-間質轉換(epithelial-mesenchymal transition,EMT) 的重要標記。E-cadherin普遍存在於上皮細胞,在腫瘤抑制上有著舉足輕重的角色。E-cadherin的表現量減少,亦涉及於EMT中。

本研究主要在探討DLK-1在不同種類卵巢上皮細胞癌中的表現量以及與腫瘤幹細胞及EMT的相關性。共收集了283個卵巢癌患者的蠟塊,將其製成組織微陣列,並分析其免疫組織化學染色結果。研究結果顯示DLK-1、CD44和Vimentin的表現量,在卵巢癌組織呈正相關 (P < 0.01);而DLK-1的表現量則與E-cadherin呈負相關,但未達統計意義 (P = 0.237)。研究結果發現,DLK-1在部分卵巢上皮細胞癌也有過度表現,尤其是子宮內膜樣卵巢癌 (Endometrioid carcinoma)。
總括來說,DLK-1可能與EMT及卵巢癌腫瘤幹細胞有關連,DLK-1或可作為卵巢癌預後評估及決定臨床治療方針之生物標記,但仍有待更進一步研究加以證實。
Abstract
Ovarian carcinoma has poor prognosis with a high mortality rate in gynecologic malignancy. The epithelial ovarian cancers account for 90% of ovarian malignancy. They have been considered arising from the surface epithelium covering the ovary. The major types of epithelial ovarian cancers include serous, endometrioid, mucinous and clear cell carcinomas.

DLK-1(Delta-Like 1 Homolog) is a transmembranous and secreted protein belonging to the epidermal growth factor-like homeotic family. Although expressed widely during embryonic development, only few types of tissue retain DLK-1 expression in adults. DLK-1 plays important roles in regulating cell differentiation, such as adipogenesis and osteogenesis. Aberrant expression of DLK1 has been found in various types of human cancers, including neuroblastoma, hepatocellular carcinoma, glioma and prostate cancer, but its expression in ovarian cancer has not yet been studied.CD44 is known as a stem cell marker. Previous studies showed that CD44 expressed higher level in ovarian cancer tissues and has been identified as a biomarker of ovarian carcinoma. Vimentin is a type III intermediate filament protein that is widely expressed in mesenchymal tissue, and is considered an important marker for epithelial-mesenchymal transition (EMT). E-cadherin is widely expressed in epithelial cells and acts as a pivotal tumor suppressor. Loss of E-cadherin expression has been known to be involved in epithelial-mesenchymal transition.

This study was aimed to discover the significance of DLK-1 expression and its correlation with tumor stemness and EMT in various types of epithelial ovarian cancer. The expression of DLK-1, CD44, vimentin and E-cadherin were analyzed in 283 ovarian carcinomas by immunohistochemistry on tissue microarray. The result showed positive correlation among DLK-1, CD44 and Vimentin expressions (P < 0.01). Although there was no statistical significance (P = 0.237), a reversed correlation was noted between the expressions of DLK-1 and E-cadherin in ovarian carcinomas. Our study revealed that DLK-1 is overexpressed in epithelial ovarian cancers, especially in endometrioid carcinoma.

In summary, DLK-1 may correlate with EMT and tumor stemness of ovarian carcinoma. Further study is needed to assess the potential use of DLK-1 for therapeutic strategy and prognosis evaluation.
目次 Table of Contents
論文審定書...........................................................i
摘要................................................................ii
Abstract............................................................iv
第一章 背景介紹......................................................1
1.1 卵巢癌的病因.....................................................1
1.2 卵巢癌的種類.....................................................1
1.3卵巢癌的分期 (FIGO分期系統及TNM) ................................2
1.4 卵巢癌的診斷.....................................................2
1.5 卵巢癌的治療.....................................................3
1.6 DLK-1............................................................4
1.7 CD44.............................................................4
1.8 Vimentin.........................................................5
1.9 E-cadherin.......................................................5
1.10上皮-間質轉換 (epithelial-mesenchymal transition,EMT)............5
1.11 實驗目的........................................................5
第二章 材料與方法....................................................7
2.1 檢體來源.........................................................7
2.2 選取樣本.........................................................7
2.3 組織微陣列 (Tissue microarray)...................................7
2.4免疫組織化學染色 (immunohistochemistry)...........................7
2.5 顯微鏡觀察.......................................................8
2.6 SPSS (Statistical Product and Service Solutions).................8
第三章 結果.........................................................10
第四章 討論.........................................................13
第五章 結論.........................................................16
參考文獻............................................................34
附錄................................................................40
參考文獻 References
1. Sushil KG, Bhagyalaxmi N. Management of Ovarian Cancer in Elderly. 2015;Reviews on Recent Clinical Trials:270-275.
2. Friedman GD, Skilling JS, Udaltsova NV, et al. Early symptoms of ovarian cancer: a case-control study without recall bias. 2015;Oxford Journals:548-553.
3. Goff BA, Mandel LS, Drescher CW, et al. Development of an Ovarian Cancer Symptom Index. 2007;CANCER:221-227.
4. 何志明醫師 卵巢癌 (2015/7/20) 國泰綜合醫院-癌症資訊網.
5. 林政道醫師 卵巢癌 (2006/1/11) 台灣婦癌醫學會.
6. Birrer MJ. The Origin of Ovarian Cancer — Is It Getting Clearer? 2010;The New England Journal of Medicine 363:1574-1575.
7. 台灣癌症臨床研究發展基金會 認識卵巢癌 台灣癌症防治網.
8. Yin D, Xie D, Sakajiri S, et al. DLK1: increased expression in gliomas and associated with oncogenic activities. 2006;Oncogene 25:1852–1861.
9. Lin L, Jinjing T, Ying Z, et al. DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on Notchsignaling. 2014;PLoS One 9:e91509.
10. Li D, Yea S, Li S, et al. Krüppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. 2005;The Journal of Biological Chemistry 280(29):26941-26952.
11. Raghunandan R, Ruiz-Hidalgo M, Jia Y, et al. Dlk1 Influences Differentiation and Function of B Lymphocytes. 2008;STEM CELLS AND DEVELOPMENT 17:495–507.
12. Li H, Cui ML, Chen TY, et al. Serum DLK1 is a potential prognostic biomarker in patients with hepatocellular carcinoma. 2015;Tumor Biology:8399-8404.
13. Yanai H, Nakamura K, Hijioka S, et al. Dlk-1, a cell surface antigen on foetal hepatic stem/progenitor cells, is expressed in hepatocellular, colon, pancreas and breast carcinomas at a high frequency. 2010;The Journal of Biological Chemistry 148: 85-92.
14. Yin D, Xie D, De Vos S, et al. Imprinting status of DLK1 gene in brain tumors and lymphomas. 2004;International Journal of Oncology 24:1011-1015.
15. Orr B, Grace OC, Brown P, et al. Reduction of pro-tumorigenic activity

of human prostate cancer-associated fibroblasts using Dlk1 or
SCUBE1. 2013; Disease Models & Mechanisms 6:530-536.
16. Zhang J, Chang B, Liu J. CD44 standard form expression is correlated with high-grade and advanced stage ovarian carcinoma but not prognosis. 2013;Human Pathology 44(9):1882–1889.
17. Hauptschein RS, Sloan KE, Torella C, et al. Functional Proteomic Screen Identifies a Modulating Role for CD44 in Death Receptor–Mediated Apoptosis. 2005;Cancer Research 65:1887-1896.
18. Gao Y, Foster R, Yang, et al. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. 2014;Oncotarget 6:9313-9326.
19. Wang H, Tan M, Zhang S, et al. Expression and Significance of CD44, CD47 and c-met in Ovarian Clear Cell Carcinoma. 2015;International Journal of Molecular Sciences 16:3391-3404.
20. Pagan R, Martín I, Alonso A, et al. Vimentin filaments follow the preexisting cytokeratin network during epithelial-mesenchymal transition of cultured neonatal rat hepatocytes. 1996;Experimental Cell Research 222(2):333-344.
21. Hoang LN, Zachara S, Soma A, et al. Diagnosis of Ovarian Carcinoma Histotype Based on Limited Sampling: A Prospective Study Comparing Cytology, Frozen Section, and Core Biopsies to Full Pathologic Examination. 2015;International Journal of Gynecological Pathology 34(6):517-527.
22. Desouki MM, Kallas SJ, Khabele D, et al. Differential Vimentin Expression in Ovarian and Uterine Corpus Endometrioid Adenocarcinomas: Diagnostic Utility in Distinguishing Double Primaries from Metastatic Tumors. 2014;International Journal of Gynecological Pathology 33(3): 274–281.
23. Burdsal CA, Damsky CH, Pedersen RA. The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak. 1993;Development 118(3):829-844.
24. Yuecheng Y, Hongmei L, Xiaoyan X. Clinical evaluation of E-cadherin expression and its regulation mechanism in epithelial ovarian cancer. 2006;Clinical & Experimental Metastasis 23(1):65-74.
25. Wu X, Zhuang YX, Hong CQ, et al. Clinical importance and therapeutic implication of E-cadherin gene methylation in human ovarian cancer. 2014;Medical Oncology 31(8):100.
26. Yan HC, Fang LS, Xu J, et al. The identification of the biological characteristics of human ovarian cancer stem cells. 2014;European Review for Medical and Pharmacological Sciences 18: 3497-3503.
27. Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. 1996;Acta anatomica 156(3):217-226.
28. Zhou XM, Zhang H, Han X. Role of epithelial to mesenchymal transition proteins in gynecological cancers: pathological and therapeutic perspectives. 2014;Tumor Biology 35(10):9523-9530.
29. Franzen CA, Blackwell RH, Todorovic V, et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. 2015;Oncogenesis 4:e163.
30. Yu-Lou W, Xue-Min Z, Zhi-Feng S, et al. Snail promotes epithelial-mesenchymal transition and invasiveness in human ovarian cancer cells. 2015;International Journal of Clinical and Experimental Medicine 8(5):7388-7393.
31. Davidson B, Tropé CG, Reich R. Epithelial–mesenchymal transition in ovarian carcinoma. 2012;Frontiers in oncology 2(33):1-13.
32. Sunyoung L, Yang Y, David F, et al. Epithelial-Mesenchymal Transition Enhances Nano-scale Actin Filament Dynamics of Ovarian Cancer Cells. 2013;The Journal of Physical Chemistry B 117(31): 9233–9240.
33. Masaaki T, Yoshito T, Hiroshi K, et al. The EMT(epithelial-mesenchymal
-transition)-related protein expression indicates the metastatic
status and prognosis in patients with ovarian cancer. 2014;Journal
of Ovarian Research 7:76.
34. Jensen CH, Teisner B, Højrup P, et al. Studies on the isolation, structural analysis and tissue localization of fetal antigen 1 and its relation to a human adrenal-specific cDNA, pG2. 1993;Human Reproduction 8(4):635-641.
35. Jensen CH, Meyer M, Schroder HD, et al. Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk. 2001;Neuroreport 12(18):3959-3963.
36. Floridon C, Jensen CH, Thorsen P, et al. Does fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials? A study of FA1 in embryonic, fetal, and placental tissue and in maternal circulation. 2000;Differentiation 66(1):49-59.
37. Satelli A, Li S. Vimentin as a potential molecular target in cancer therapy Or Vimentin, an overview and its potential as a molecular target for cancer therapy. 2012;Cellular and Molecular Life Sciences 68(18): 3033–3046.
38. Dabbs DJ, Geisinger KR. Common Epithelial Ovarian Tumors Immunohistochemical Intermediate Filament Profiles. 1988;Cancer 62:368-374.
39. Yu L, Zhou L, Wu S, et al. Expressions of CD133, E-cadherin, and Snail in epithelial ovarian cancer and their clinicopathologic and prognostic implications. 2015;Nan Fang Yi Ke Da Xue Xue Bao 35(9):1297-1302.
40. Raghu K, Robert W. The basics of epithelial-mesenchymal transition. 2009;The Journal of Clinical 119(6):1420-1428.
41. Colomiere M, Ward AC, Riley C, et al. Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian Carcinomas. 2009;British Journal of Cancer 100:134–144.
42. Laborda J, Sausville EA, Hoffman T, et al. dlk, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. 1993;The Journal of Biological Chemistry 268(6):3817-3820.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code