Responsive image
博碩士論文 etd-0806116-224402 詳細資訊
Title page for etd-0806116-224402
論文名稱
Title
氮化銦鎵之多重量子井的光學特性
Optical properties of InGaN/GaN Multi-quantum well
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-09-06
關鍵字
Keywords
氮化銦鎵、時間解析營光光譜、光激發螢光光譜、局域態現象、載子生命週期、內部量子效率
Photoluminescence, Localized state, Internal quantum efficiency, InGaN, Time-resolved photoluminescence, Carrier lifetime
統計
Statistics
本論文已被瀏覽 5703 次,被下載 0
The thesis/dissertation has been browsed 5703 times, has been downloaded 0 times.
中文摘要
本論文中使用摻鈦藍寶石(Ti:sapphire)與單光子計數器系統(TCSPC)對生長在藍寶石基板c面上的氮化銦鎵(InGaN)多重量子井進行光激發螢光(PL)光譜與時間解析螢光(TRPL)光譜的量測。在變溫光激發螢光(PL)光譜中經過峰值擬合後發現氮化銦鎵(InGaN)的發光峰值會隨著溫度上升而呈現出S-shape這是因為局域態(Localized state)現象造成並且發現氮化銦鎵(InGaN)的縱向光學聲子能量約在86-90 meV區間,接下來在室溫發光波段約為457 nm其經由能帶公式(Band gap as function of In content)計算出銦(In)含量為19%,然後內部量子效率(IQE)會隨溫度上升而下降,其原因來自於加溫時會活化(Thermal active)非輻射複合中心以致發光效率下降,且在300K下IQE為29%。在TRPL也會發現發光波段的生命週期也會隨著溫度上升而有下降趨勢,其值分別在14 K與300 K下為14.32 ns與12.34 ns。從內部量子效率與生命週期的關係式計算出輻射發光複合生命週期與非發光輻射複合生命週期會個別隨隨溫度上升而上升和下降,我們發現輻射發光複合生命週期會跟Lasher-Stern mode跟T^(3⁄2)成正比,因為輻射發光複合是來自能帶對能帶(Band to band),且根據輻射發光複合係數、載子濃度與輻射發光複合生命週期的關係:(1 )/τ_r =Bn得出輻射複合係數在300K為1.46×〖10〗^(-11) 〖cm〗^3 s^(-1),最後計算歐傑活化能為8.17 meV。
Abstract
We use a Ti: sapphire femtosecond laser and a Time Correlated Single Photon Counting (TCSPC) system to study optical properties of InGaN multi-quantum well on the c-plane sapphire substrate using photoluminescence (PL) and time-resolved photoluminescence (TRPL). In variation-temperature PL, we found InGaN emission peak exhibit S-shape with increasing temperature because of the localized state and longitudinal optical phonon energy of about 86-90 meV. The emission peak at the room temperature of about 457 nm could be obtained from band gap as function of In content at 19%. Subsequently, the internal quantum efficiency (IQE), 29% at 300 K, decreases with increasing temperature which is due to the thermal active non-radiative recombination centers that causes the luminous efficiency decreases. The carrier lifetime in the light emission decreases with increasing temperature (14.32 to 12.34 ns at 14 K and 300 K, respectively). The radiative and non-radiative lifetime obtained from IQE and carrier lifetime were shown to increase in radiative lifetime and to decrease in non-radiative lifetime, respectively, with increasing temperature. We found Lasher-Stern model to describe the radiative lifetime to be proportional to T^(3/2) which comes from the radiative recombination from band to band. Based on the radiative recombination, carrier concentration and radiative lifetime:(1 )/τ_r =Bn, we calculated the recombination coefficient of 1.46×〖10〗^(-11) 〖cm〗^3 s^(-1) at 300 K. Finally, the Auger activation energy was calculated to be 8.17 meV.
目次 Table of Contents
論文審定書………………………………………………………...…….i
致謝……………………………………………………………...………ii
摘要………………………………………………………...................iii
Abstract………………………………………………………………...iv
目錄………………………………………………………..................vi
圖目錄………………………………………………………………....viii
表目錄……………………………………………………………….....xi
第一章 導論………………………………………………………….....1
1.1前言……………………………………………………………….....1
1.2 發光二極體的結構…………………………………………….…...1
1.3相關文獻探討………………………………………………….…....2
第二章 基本原理………………………………………………….…....8
2.1光激發螢光光譜……………………………………………….…....8
2.2載子動力學……………………………………………………..…...9
2.3電子與電洞複合方式…………………………………………..…..11
2.4時間解析螢光光譜……………………………………………..…..13
第三章 實驗原理與光路架設………………………………….…...…15
3.1 Mai Tai Laser………………………………………………...……15
3.2 TP-2000B Tripler原理………………………………………........16
3.3 TCSPC (Time-Correlated Single Photo Counting)系統簡介....18
3.4實驗光路架設……………………………………………………....24
第四章 實驗結果與討論……………………………………………....25
4.1樣品資訊…………………………………………………………....25
4.2光激發螢光光譜…………………………………………………....26
4.3時間解析螢光光譜………………………………………………....38
第五章 結論…………………………………………………………....44
參考文獻…………………………………………………………….....45
參考文獻 References
1.Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, “Efficiency droop behaviors of In Ga N ∕ Ga N multiple-quantum-well light-emitting diodes with varying quantum well thickness”, Appl. Phys. Lett. 91, 181113 (2007).
2.D Zhu, D J Wallis and C J Humphreys, “Prospects of III-nitride optoelectronics grown on Si”, Rep. Prog. Phys. 76, 106501 (2013).
3.Liyang Zhang, Kai Cheng, Hu Liang, Ruben Lieten, Maarten Leys, and Gustaaf Borghs, “Photoluminescence Studies of Polarization Effects in InGaN/(In)GaN Multiple Quantum Well Structures”, Jpn. J. Appl. Phys. 51, 030207 (2012).
4.Panpan Li, Hongjian Li, Zhi Li, Junjie Kang, Xiaoyan Yi, Jinmin Li, and Guohong Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber lightemitting diodes”, J. Appl. Phys. 117, 073101 (2015).
5.田民波, 呂輝宗, 溫坤禮,“白光LED照明技術”, 五湖圖書出版股份有限公司, p.155-158 (2011).
6.Yuanping Sun, Yong-Hoon Cho, Hwa-Mok Kim, and Tae Won Kang,“High efficiency and brightness of blue light emission from dislocation-free InGaN ∕ GaN quantum well nanorod arrays”, Appl. Phys. Lett. 87, 093115 (2005).
7.Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J.Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities”, Appl. Phys. Lett. 94, 111109 (2009).
8.Takakazu Kohno, Yasuhiro Sudo, Masaki Yamauchi, Kazuya Mitsui,Hiromitsu Kudo, Hiroaki Okagawa, and Yoichi Yamada, “Internal Quantum Efficiency and Nonradiative Recombination Rate in InGaN-Based Near-Ultraviolet Light-Emitting Diodes”, Jpn. J. Appl. Phys. 51, 072102 (2012).
9.Min-Ki Kwon, Ja-YeonKim, Seong-JuPark, “Enhanced emission efficiency of green InGaN/GaN multiple quantum wells by surface plasmon of Au nanoparticles”, J. Cryst. Growth 370, 124 (2013).
10.Hideaki Murotani, Yoichi Yamada, Takuya Tabata, Yoshio Honda, Masahito Yamaguchi, and Hiroshi Amano, “Effects of exciton localization on internal quantum efficiency of InGaN nanowires”, J. Appl. Phys. 114, 153506 (2013).
11.Cheng-Hsueh Lu, Shang-En Wu, Yen-Lin Lai, Yun-Li Li, Chuan-Pu Liu, “Improved light emission of GaN-based light-emitting diodes by efficient localized surface plasmon coupling with silver nanoparticles”, J. Alloys Compd. 585, 460 (2014).
12.M. J. Davies, S. Hammersley, F. C.-P. Massabuau, P. Dawson, R. A. Oliver, M. J. Kappers, and C. J.Humphreys, “A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers”, J. Appl. Phys. 119, 055708 (2016).
13.S. Keller, S.F. Chichibu1, M.S. Minsky, E. Hu, U.K. Mishra, S.P. DenBaars, “E¤ect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells”, J. Cryst. Growth. 195 258 (1998).
14.J A Davidson, P Dawson, Tao Wang, T Sugahara, J W Orton and S Sakai, “Photoluminescence studies of InGaN/GaN multi-quantum wells”, Semicond. Sci. Technol. 15 497 (2000).
15.Yong-Hoon Cho, S. K. Lee, H. S. Kwack, J. Y. Kim, K. S. Lim, H. M. Kim, T. W. Kang, S. N. Lee, M. S. Seon, O. H. Nam, and Y. J. Park,“Carrier loss and luminescence degradation in green-light-emitting InGaN quantum wells with micron-scale indium clusters”, Appl. Phys. Lett. 83, 2578 (2003).
16.Soon-Yong Kwon, Hee Jin Kim, Euijoon Yoon, Yudong Jang, Ki-Ju Yee, Donghan Lee, Seoung-Hwan Park, Do Young Park, Hyeonsik Cheong, Fabian Rol, and Le Si Dang, “Optical and microstructural studies of atomically flat ultrathin In-rich InGaN∕GaN multiple quantum wells”, J. Appl. Phys. 103, 063509 (2008).
17.曾耀功, “氮化銦薄膜的載子冷卻研究”, 國立中山大學物理所碩士論文 (2011).
18.Antaryami Mohanta, Shiang-Fu Wang, Tai-Fa Young, Ping-Hung Yeh, Dah-Chin Ling, Meng-En Lee, and Der-Jun Jang, “Observation of weak carrier localization in green emitting InGaN/GaN multi-quantum well structure”, J. Appl. Phys. 117, 144503 (2015).
19.M. R. Correia, S. Pereira, E. Pereira, J. Frandon, and E. Alves, “Raman study of the A1(LO) phonon in relaxed and pseudomorphic InGaN epilayers”, Appl. Phys. Lett. 83, 4761 (2003).
20.T Y Lin, J C Fan and Y F Chen, “Effects of alloy potential fluctuations in InGaN epitaxial films”, Semicond. Sci. Technol. 14, 406 (1999).
21.K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN∕GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett 85, 401 (2004).
22.Huining Wang, Ziwu Ji, Shuang Qu, Gang Wang, Yongzhi Jiang, Baoli Liu, Xiangang Xu, and Hirofumi Mino, "Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells," Opt. Express 20, 3932-3940 (2012).
23.Horng-Chang Liu, Chia-He Hsu, Wu-Ching Chou, Wei-Kuo Chen, and Wen-Hao Chang, “Recombination lifetimes in InN films studied by time-resolved excitation-correlation spectroscopy”, Phys. Rev. B. 80, 193203 (2009).
24.Han-Youl Ryu, Won Jun Choi, Ki-Seong Jeon, Min-Goo Kang, Yunho Choi, and Jeong-Soo Lee, “Analysis of below-threshold efficiency characteristics of InGaN-based blue laser diodes”, J. Appl. Phys. 112, 083109 (2012).
25.X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. C. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance”, J. Appl. Phys. 111, 063112 (2012).
26.I. P. Seetoh, C. B. Soh, E. A. Fitzgerald, and S. J. Chua, “Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence”, Appl. Phys. Lett. 102, 101112 (2013).
27.Ya Ya Kudryk, A K Tkachenko and A V Zinovchuk,“Temperature-dependent efficiency droop in InGaN-based light-emitting diodes induced by current crowding”, Semicond. Sci. Technol. 27, 055013 (2012).
28.Emmanouil Kioupakis, Patrick Rinke, Kris T. Delaney, and Chris G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes”, Appl. Phys. Lett. 98, 161107 (2011).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.179.186
論文開放下載的時間是 校外不公開

Your IP address is 18.222.179.186
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code