Responsive image
博碩士論文 etd-0806117-115158 詳細資訊
Title page for etd-0806117-115158
論文名稱
Title
高溫氧化層對鈦合金無模抽製成形影響
Effects of High Temperature Oxide Layers on Titanium Alloys Dieless Drawing Forming
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-31
繳交日期
Date of Submission
2017-09-06
關鍵字
Keywords
感應加熱模擬、金屬高溫氧化、Ti-6Al-4V、無模抽製成形
High temperature oxidation, Dieless drawing, Ti-6Al-4V, Simulation of induction heating
統計
Statistics
本論文已被瀏覽 5755 次,被下載 228
The thesis/dissertation has been browsed 5755 times, has been downloaded 228 times.
中文摘要
由於鈦合金的高強度,若使用傳統有模抽製尺寸細小的鈦毛細管有其困難之處。因此,本研究針對線材直徑為1mm的Ti-6Al-4V線材經過無模抽製成形後產品微觀結構與氧化層對產品機械性質影響與探討。首先,本實驗透過壓克力建立一氬氣腔體於無模抽製加熱端以防止鈦線於製程中氧化。後續分別由金相觀察、硬度試驗、拉伸試驗探討鈦線於不同抽製溫度、及不同氧化條件下的機械性質。本實驗於金相觀察結果推論鈦線β相中細針線微觀組織的厚度與抽製過程冷卻速率有關,並於微硬度試驗觀察到硬度值可能因為材料晶粒分佈而出現不規則的變異。後續,分別使用有氧化線材與無氧化線材進行拉伸試驗,並觀察出氧化層可能會改變材料的降伏強度、抗拉強度及延展性。
最後,透過有限元素軟體DEFORM內建感應加熱功能建立與實驗機台架構相仿的無模抽製模擬模型,並透過無模抽製成形實驗比較感應加熱模擬的溫度分佈,並驗證感應加熱模擬的可行性。驗證感應加熱模擬準確度後,本實驗以此架構模擬出線材於不同製程參數下線材成形輪廓及具有氧化層之鈦線模擬。
Abstract
In this study, the effects of oxidation and the corresponding influence of mechanical properties on Ti-6Al-4V wire after dieless drawing process are under investigated. At the beginning, an acrylic argon chamber was built for preventing the oxidation of workpiece during dieless drawing process. Later, the examinations of mechanical properties of dieless drawing product are conducted through metallographic experiment、hardness test and tensile test respectively. In the result of metallographic experiment, the needle-like pattern micro-structure inβ phase is observed,and we concluded that the possibility of needle-like pattern forming is about cooling rate during dieless drawing process. In micro-hardness test we observed that the hardness value is irregular, and we concluded that the irregularity might come from the exist of different phase in titanium. The mechanical properties of titanium under different oxide conditions and different drawing conditions was investigated through tensile test.
Finally, an induction heating simulation modules which the validity has been proved was applied to the simulation of dieless drawing. After the simulation of induction heating, an FEM model was built for simulating the profile of drawing product.
目次 Table of Contents
論文審定書 i
謝誌 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 x
表目錄 xv
符號說明 xvi
第一章 緒論 1
1.1 前言 1
1.2 鈦金屬介紹 2
1.2.1 鈦金屬分類 4
1.2.2 Ti-6Al-4V特性與應用 5
1.3 金屬氧化行為 6
1.3.1 頓化作用 6
1.3.2 鈦金屬氧化層 7
1.3.3 金屬高溫氧化行為 8
1.3.4 鈦金屬氧化行為 10
1.4 抽製成形技術簡介 11
1.4.1 有模抽製法 11
1.4.2 無模抽製法 12
1.5 文獻回顧 13
1.5.1 無模抽製成形 13
1.5.2 無模壓縮成形 14
1.5.3 尺寸效應問題 16
1.5.4 無模抽製製程氧化問題 17
1.6 研究目的 18
1.7 論文架構 18
第二章 無模抽製成形機台簡介 19
2.1 實驗機台簡介 19
2.1.1 無模抽製機傳動系統 20
2.1.2 感應加熱原理 21
2.1.3 無模抽製機台加溫設備 23
2.1.4 紅外線測溫原理 24
2.2 機台改裝說明 26
第三章 無模抽製成形後試片檢測與探討 27
3.1 實驗規劃 27
3.1.1 預防無模抽製製程中金屬高溫氧化 28
3.2 無模抽製成形實驗 31
3.2.1 斷面縮減率 31
3.2.2 實驗機台參數 32
3.2.3 實驗參數設定 33
3.2.4 無模抽製成形實驗機台操作流程與注意事項 34
3.3 金相觀察 35
3.3.1 α+β型鈦合金微觀組織 35
3.3.2 α+β型鈦合金之全片層組織 35
3.3.3 片層組織分類(Lamellar microstructure) 37
3.3.4 全片層組織之鈦合金微觀結構與機械性質之關係 38
3.3.5 全片層組織α細針狀組織與機械性質之關係 38
3.3.6 金相試驗試片前處理 39
3.3.7 濺鍍法 39
3.3.8 試片濺鍍過程 40
3.3.9 試片電鍍 41
3.3.10 電鍍理論 42
3.3.11 電鍍參數設定 43
3.3.12 試片研磨 44
3.3.13 鈦金屬腐蝕液配方 45
3.3.14 Ti-6Al-4V鈦線腐蝕時間 47
3.3.15 微觀組織觀察 49
3.3.16 冷卻速率與微觀結構關係 51
3.4 硬度試驗 55
3.4.1 維克式硬度試驗介紹 55
3.4.2 無模抽製成形線材硬度分佈 57
3.5 拉伸試驗 63
第四章 無模抽製成形之有限元素分析 69
4.1 有限元素分析軟體DEFORM簡介 69
4.1.1 DEFORM感應加熱模擬介紹 69
4.1.2 DEFORM感應加熱模擬設定步驟 70
4.1.3 DEFORM感應加熱模組於無模抽製模擬之溫度分佈 72
4.1.4 無模抽製成形線材輪廓模擬值與實驗值比較 78
4.2 具有氧化層之鈦線成形模擬 83
4.2.1 氧化層塑流應立之建立 84
4.2.2 具有氧化層之鈦線成形模擬結果與討論 85
第五章 結論 88
5.1 研究成果與摘要 88
5.1.1 鈦合金線材降伏強度 88
5.1.2 鈦合金線材硬度值 89
5.1.3 高週波感應式無模抽製模擬之準確性 90
5.2 今後研究建議 91
參考文獻 References
[1] Nexus Market Analysis “Nexus Market Analysis for MEMS and Microsystems III”,(2009)
[2] J.Gambogi and S. J. Gerdemann, “Titanium metal: Extraction to Application”, USGS - National Center, Reston, Virginia 20192
[3] High purity titanium sponge, Nanoshel LLC, https://www.nanoshel.com/
[4] J. M. Donachie, “Titanium, A Technical Guide”, ASM International, Metals Park
[5] Basim A. Khidhir, Mahadzir Ishak, et.al, “Titanium and its alloy, International Journal of Science and Research”, pp.4(2014).
[6] Serope Kalpakjian, “Steven R. Schmid, Manufacturing Engineering and Technology 6th edition”, 高立圖書,pp110-111(2012)
[7] 洪胤庭,純鈦及鈦合金特性及製程介紹, 中鋼公司新材料研究發展處, pp12-22(2013)
[8] David John Young, “High temperature oxidation and corrosion of metals Ch1”, Elsevier, pp.1-27(2008)
[9] 許源泉, 塑性加工學第二版第六章, 全華圖書有限公司, pp.6-38(2012)
[10] P. Tiernan, Comprehensive materials, Vol.3, pp.149-156(2014)
[11] 關口秀夫,ダイレス引抜き加工法,日本塑性加工学会誌,第7巻,第180号, pp.67-71 (1976)。
[12] P. Tiernan, M. T. Hillery, “Dieless wire drawing an experimental and numerical analysis,” Journal of Materials Processing Technology, Vol. 155-156, pp. 1178-1183 (2004).
[13] M. Kaltenbrunner, G. Liedl, A. Kratky, R. Bielak, “Lawd-laser assisted wire drawing,” Laser Assisted Net shape Engineering 4, pp. 1175-1181 (2004).
[14] Y. Huh, B. Keun Ha, J. S. Kimi, “Dieless drawing steel wires using a dielectric heating method and modeling the process dynamics,” Journal of Materials Processing Technology, Vol. 210, pp. 1702-1708 (2010).
[15] Manabe.K., N.Q. Hung,” Development of Dieless Compression Process for Fabrication of Metal Bellows”, Tokyo Metropolitan University, pp1-94(2011)
[16] Furushima.T., Manabe.K., Kitamura.R., “Development of Laser Assisted Dieless Tube Forming Apparatus for Fabrication of Micro Metal Bellows”
[17] Jenn-Terng.G., Chris.P., Jyhwen.W. , “An experimental study on size effects on flow stress and formability of aluminm and brass for microforming”, Journal of Materials Processing Technology184, pp42-46(2007)
[18] Furushima.T , Manabe.K., Imagawa.Y., Sakai.T. , “Effects of oxidation and surface roughening on drawing limit indieless drawing process of SUS304 stainless steel microtubes”, Journal of Materials Processing Technology 223, pp186-192(2015)
[19] 郭宗育,無模拉製成形雛形機之設計與製作,國立中山大學與機電工程系碩士論文,民國100年六月。
[20] 林澤余, 鈦金屬線之無模抽製成形研究, 國立中山大學與機電工程系碩士論文,民國104年七月。
[21] R. E. Haimbaugh, “Practical Induction Heat Treating 2nd edition”, ASM Interbnational, pp.9-21 (2015)
[22] 李宗憲,無模拉製成形之熱傳解析及無模線材拉製系統設計,國立中山大學與機電工程系碩士論文,民國102年六月。
[23] F.C. Campbell, “Manufacturing Technology For Aerospace Structural Materials Ch.4” , Elsevier Inc.,pp119-173(2007)
[24] L.M. Gammon, R.D. Briggs, J.M. Packard, et.al, “Metallography and Microstructures of Titanium and Its Alloys”, ASM handbook Vol.9 ,pp899-917 (2004)
[25] Mikell P. Groover, “Fundamentals of Modern Manufacturing 4th”, John Wiley & Sons (2010).
[26] Jack W.Dini, Dexter D.Snyder, “Modern Electroplating 5th edition Ch.2” , John Wiley & Sons Inc. ,pp.33-78(2010)
[27] J. Sieniawski, W. Ziaja, K. Kubiak, et.al, “Titanium Alloys - Advances in Properties Control Ch.4”, InTech, pp70-80(2013)
[28] G. Lutjering ”Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys”,Materials Science and Engineering A243 ,pp.32-45 (1998)
[29] VHX-5000, Keyence Corporation, http://www.keyence.com.tw/ss/products/microscope/vhx5000/
[30]ASTM E384-11, “Standard Test Method for Knoop and Vickers Hardness of Materials”(2012)
[31]Science Forming Technologies Corporation, “DEFORM Operation Manuals”(2014)
[32]R. Reda, Adel A. Nofal, Abdel-Hamid A. Hussein, “Effect of Quenching Temperature on the Mechanical Properties of Cast Ti-6Al-4V Alloy, Journal of Metallurgical Engineering Vol.2,pp.48-54(2013)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code