Responsive image
博碩士論文 etd-0806117-152813 詳細資訊
Title page for etd-0806117-152813
論文名稱
Title
鋁合金於非對稱大鼓脹管件液壓成形之研究
Study of Large-expansion-ratio and Asymmetric Tube Hydroforming of Aluminum Alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-31
繳交日期
Date of Submission
2017-09-12
關鍵字
Keywords
可移動式模具、大鼓脹、有限元素分析、液壓成形、非對稱
Movable Die, Hydroforming, Asymmetric, Finite element analysis, Large-expansion
統計
Statistics
本論文已被瀏覽 5752 次,被下載 493
The thesis/dissertation has been browsed 5752 times, has been downloaded 493 times.
中文摘要
管件液壓成形技術為一種相對新的技術應用在結構輕量化上。隨著環保意識提高,在航太工業、汽車工業利用質量輕且堅固的製造技術以達到節省能源的效果,並且使得液壓成形技術能夠有更多元的應用。本研究專注於大鼓脹變形與可移動式模具間之負載曲線的討論,並以油槍管做為討論之成品。而油槍管外形的特性為非對稱且有一大鼓脹之區域的成形結構,在製作過程中為了避免缺陷產生,如挫曲、皺褶與破裂的情況利用可移動式模具作為鼓脹區域的控制以達到成品厚度較為均一的情況。利用DYNAFORM與LS-DYNA進行有限元素分析,與材料A6061-O之材料進行參數之討論,包括主推桿進給量、次推桿進給量、可移動式模具進給量和內壓力路徑對不同移動模具外形於成品厚度之影響。
Abstract
Tube hydroforming is a relatively new manufacturing approach for producing lightweight metal structure components. Because of the increasing environmental awareness, using lighter and stronger componments are required to achieve energy-saving, and makes hydroforming technology have more applications in industrial manufacturing. In this study, a refueling tube applied in the car is selected as the finished product. It is focused on the discussion of large-expansion ratio tube hydroforming with movable die and loading path. The shape of refueling tube has features of large-expansion ratio and asymmetric structure. In the forming process, in order to avoid the occurrence of defects, such as buckling, wrinkling and crack, a movable die is used to control the forming area to make the thickness more uniform at the finished product. Finite element code LS-DYNA and DYNAFORM is used to analyze. The plastic deformation of the material A6061-O is used. The effect of primary punch axial feeding, secondary punch axial feeding, movable die feeding and internal pressure on the thickness of the product are discussed.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiv
第一章 緒論 3
1.1 前言 3
1.2 管件液壓成形技術簡介與應用 6
1.2.1 管件液壓成形理論與影響因子 7
1.2.2 管件液壓成形之優缺點 12
1.2.3 管件液壓成形技術應用 13
1.2.4 可移動模具應用於管件液壓成形介紹 14
1.3 文獻回顧 15
1.3.1 管件液壓成形技術相關文獻 15
1.3.2 管件液壓成形解析相關文獻 16
1.4 研究動機與目的 19
1.5 論文架構與研究流程 20
第二章 大鼓脹管件液壓成形之有限元素分析 22
2.1 前言 22
2.2 DYNAFORM與LS-DYNA求解核心簡介 22
2.3 材料機械性質 24
2.3.1 鋁合金A6061單軸拉伸試驗 24
2.3.2 鋁合金A6061塑流應力計算 26
2.4 大鼓脹液壓成形設計概念 31
2.4.1 大鼓脹液壓成形設計概念 33
2.4.2 對稱大鼓脹液壓成形模具 35
2.4.3 非對稱大鼓脹液壓成形模具 37
2.5 對稱大鼓脹管件液壓成形模擬解析 38
2.5.1 幾何模型建立 38
2.5.2 參數設定 49
2.5.3 成形負載路徑探討與厚度分布圖、成形極限圖探討 50
2.6 非對稱大鼓脹管件液壓成形模擬解析 63
2.6.1 幾何模型建立 63
2.6.2 參數設定 69
2.6.3 成形負載路徑探討與厚度分布圖、成形極限圖探討 70
2.6.4 歩階成形負載曲線對管件厚度之影響 78
第三章 非對稱大鼓脹管件液壓成形實驗 82
3.1 實驗目的 82
3.2 實驗管材使用與設備模具配置 82
3.2.1 實驗管材使用 82
3.2.2 實驗設備配置 84
3.2.3 實驗模具配置 86
3.3 實驗步驟 88
3.4 實驗結果討論 90
3.4.1 實驗成品外觀 90
3.4.2 實驗之負載曲線與模擬之負載曲線比較 91
第四章 結論 93
4.1 對稱大鼓脹管件液壓成形之模擬 93
4.2 非對稱大鼓脹管件液壓成形之模擬 93
4.3 非對稱大鼓脹管件液壓成形實驗 94
4.4 今後研究課題 94
參考文獻
參考文獻 References
[1] L.H. Lang, Z.R. Wang, D.C. Kang, S.J. Yuan, S.H. Zhang, J. Danckert, K.B. Nielsen, “Hydroforming highlights: sheet hydroforming and tube hydroforming”, Journal of Materials Processing Technology, Vol. 151, pp.165-177, 2004
[2] M. Koc, T. Altan, “An overall review of the tube hydroforming (THF) technology”, Journal of Materials Processing Technology Vol. 108, pp.384-393, 2001
[3] 周宗易,“液壓成形(Hydro-forming)於閥製品之應用”,中國機械工程學會第二十一屆全國學術研討會論文集,2004
[4] N. Asnafi, “Analytical modelling of tube hydroforming”, Thin-Walled Structures Vol34, pp.295-330, 1999
[5] E. Chu, Y. Xu, “Hydroforming of Aluminum extrusion tubes for automotive applications. Part I: buckling, Wrinkling and bursting analyses of aluminum tubes”, International Journal of Mechanical Sciences Vol. 46, pp.263-283, 2004
[6] F. Dohmann, C. Hartl, “Tube hydroforming – research and practical application”, Journal of Materials Processing Technology Vol.71, pp.174-186, 1997
[7] S.H. Zhang, “Developments in hydroforming”, Journal of Materials Processing Technology Vol.91, pp.236-244, 1999
[8] M. Ahmetoglu, T. Altan, “Tube hydroforming: state-of-the-art and future trends”, Journal of Materials Processing Technology Vol.98 pp,25-33, 2000
[9] 鄭炳國,“管件液壓成形”,科學發展,400期,pp.12-17, 2006
[10] 陳敏滄,“可移動式模具於管材液壓成形之應用”,國立中山大學機械與機電工程研究所碩士論文, 2013
[11] 謝昕諺,“應用可移動式模具於管材大鼓脹液壓成形之研究”,國立中山大學機械與機電工程研究所碩士論文, 2015
[12] D.J. Kim, Y.C. Shin, S.H. Bae, S.J. Lim and D.J.Yoon, “Formability Evaluation of Titanium Ally (Ti-3Al-2.5V) in Cold Tube Hydroforming”, 6th International Conference on Tube Hydroforming, pp.215-220, 2013
[13] 陳秉鴻,“具有背壓控制之液壓鼓脹成形之自適性模擬” ,國立中山大學機械與機電工程研究所碩士論文, 2005
[14] 王聖元,“T形管支管件液壓成形模擬分析”,國立屏東科技大學車輛工程研究所碩士論文, 2010
[15] S. Jirathearanat, C. Hartl, T. Altan, “Hydroforming of Y-shapes-product and Process Design Using FEA Simulation and Experiments”, Journal of Materials Processing Technology Vol.146, pp.124-129, 2004
[16] K. Manabe, D. Kobayashi, X Chen, Y.M. Hwang, K.H. wang, “Experimental Validation of Fuzzy Process Control of Y-shape Hydroforming for AZ61 Magnesium Alloy Tube”, 6th International Conference on Tube Hydroforming, pp.199-203, 2013
[17] A. shirayori, M.Narazaki, “Cross-shaped Tube Hydroforming of Small Diameter Tubes”, 4th International Conference on Tube Hydroforming, pp.121-126, 2009
[18] H. Sato, D. Kobayashi, K. Manabe, “Numerical and Experimental Investigations of Cross Shaped Micro Tube Hydroforming”, 7th International Conference on Tube Hydroforming, pp.64-69, 2015
[19] M.Wade, M. Mizumura, K. Sato, “Development of Structural Joint with Right-angled Two Branches by Hydroforming”, 5th International Conference on Tube Hydroforming, pp.62-65, 2011
[20] K.sato, I. hiroshige, K. hiramatsu, “Tube Hydroforming With Movable Dies”, 4th International Conference on Tube Hydroforming, pp.246-251, 2009
[21] M.Wade, K. Iguchi, M. Mizumura, H. Kaneda, “Weight Reduction of Axle-housings Using High-expansion-ratio Hydroforming Technology”, 6th International Conference on Tube Hydroforming, pp.68-72, 2013
[22] Q. Zhang, C.D. Wu, S.D. Zhao, “Numerical Simulation on Hydroforming Tube-like Eccentric Shaft Part by Using Movable Die”, 5th International Conference on Tube Hydroforming, pp.149-152, 2011
[23] A. Tomizawa, H. Kubota, “Development of Tube Hydroforming Technology Using Axial Movable Dies”, 日本塑性加工學會誌,第56卷,第648號,pp.40-46, 2015
[24] M. Liewald, M. Barthau, S. Wanger, “New Tool Concept for Internal-High-Pressure Forming of Long Thin-walled Tubes”, 7th International Conference on Tube Hydroforming, pp.55-63, 2015
[25] T.Belytschko, J.I. Lin, C.S. Tsay, “Explicit Algorithms for the nonlinear dynamics of shells”, Computer Methods in Applied Mechanics and Engineering Vol.42, pp.225-251, 1984
[26] S. Keeler, “The Enhanced FLC Effect”, Enhanced Forming Limit Diagram Project Team Technology Report, 2003
[27] H.K. Yi, H.S. Yim, G.Y. Lee, S.M. Lee, G.S. Chung, Y.H. Moon, “Experimental Investigation of Friction Coefficient in Tube Hydroforming”, Transactions of Nonferrous Metals Society of China Vol.21, pp.194-198, 2011
[28] S.Yuan, X. Wang, G. Liu, Z.R. Wang, “Control and use of wrinkles in tube hydroforming”, Journal of Materials Processing Technology Vol.182, pp.6-11, 2007
[29] S. Fuchizawa, “Deformation of Metal Tubes Under Hydrostatic Bulge Forming With Closed Die,” Advanced Technology of Plasticity, Vol.3, p.1543-1548 , 1993
[30] S. Fuchizawa and M Narazaki, “Analysis of Bulge Deformation of Thin Tube with Cylinderical Die,” J. Japan Society Technology Plasticity, Vol.30, p.116-122, 1989
[31] S. Fuchizawa, A. Shirayori, H. Yamamoto, and M. Narazaki, “Bulge forming of thin copper tube by axial compression and internal pressure,” Journal of JSTP , Vol.35, No.398, p.251, 1994
[32] S. Fuchizawa and M Narazaki, “Analysis of Bulge Deformation of Thin Tube with Cylinderical Die,” J. Japan Society Technology Plasticity, Vol.30, p.116-122, 1989
[33] J. Tirosh, A. Neuberger, A. Shirizly, “On Tube Expansion by Internal Fluid Pressure with Additional Compressive Stress”
[34] M. Koc, T. Altan, “Prediction of Forming Limits and Parameters in the Tube Hydroforming Process”, International Journal of Machine Tools & Manufacture Vol.42, pp.123-138, 2002
[35] N. Asnafi, A. Skogsgardh, “Theoretical and Experimental Analysis of Stroke Controlled Tube Hydroforming”, Materials Science and Engineering Vol. 279, pp.95-110, 2000
[36] N. Asnafi, “Analytical modelling of tube hydroforming”, Thin-Walled Structures Vol.34 pp.295-330, 1999
[37] M. Stranol, S. Jirathearanat, T. Altan, “Adaptive FEM Simulation for Tube Hydroforming: a Geometry-Based Approach for Wrinkle Detection”, Annals of the CIRP , Vol.50, pp. 185-190, 2001.
[38] K. Mori, T. Maeno, S. Maki, “Mechanism of improvement of formability in pulsating hydroforming of tubes”, International Journal of Machine Tools & Manufacture Vol.47, pp.978-984,2007
[39] 王祝堂,田榮璋,”鋁合金及其加工手冊”,pp.72-74,pp.311-321
[40] ASTM., “Standard Test Methods for Tension Testing of Metallic Materials”, E8/E8M-15, pp.11, 2015, Pennsylvania, USA
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code