Responsive image
博碩士論文 etd-0807106-170812 詳細資訊
Title page for etd-0807106-170812
論文名稱
Title
小波轉換應用於光纖感測之研究
The study of applying wavelet transform to fiber optic sensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
175
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-22
繳交日期
Date of Submission
2006-08-07
關鍵字
Keywords
傅立葉轉換、靈敏度校正、穩態信號、小波轉換、暫態信號
Transient signal, Fourier transform, Sensitivity calibration, Stable signal, Wavelet transform
統計
Statistics
本論文已被瀏覽 5660 次,被下載 5244
The thesis/dissertation has been browsed 5660 times, has been downloaded 5244 times.
中文摘要
小波轉換相較於傅立葉轉換,最大的優點是在於其適用於處理暫態信號,尤其是其分支中的小波包分析法因有相當好的頻率解析度,因此在學術界、工業界被廣為研究及應用,故本文以小波包分析法,進行光纖感測的研究。
本論文以傳統傅立葉分析法為基礎、小波包分析法作比較,研究主題包含:(1)水中聽音器之靈敏度量測;(2)振動量測。在水中聽器之靈敏度方面,利用傅立葉分析法所得的量測結果,實驗誤差高達2.7 dB re V/μPa,另量測之標準差也高達5.3 dB re V/μPa;然而,利用小波分析法進行同樣的靈敏度量測分析,則僅有0.5 dB re V/μPa的量測誤差,其量測結果的標準差為1.6 dB re V/μPa,由此可見小波包分析較傳統傅立葉分析有較佳的分析能力。在振動量測方面,我們以FBG振動干涉儀進行穩態信號量測,由實驗結果可證實,小波包分析具有與傅立葉分析的相同頻率解析能力;而在落石所引起的暫態振動特徵信號之擷取,由實驗結果,可知對於特徵信號擷取及特徵信號辨識,小波包分析法相較於傳統傅立葉分析結果均有較佳的特徵信號擷取與辨識能力。
Abstract
The main advantage of wavelet transform relative to its Fourier analysis counterpart is its suitability to deal with transient signals. Furthermore, wavelet packet transform has very good frequency analytic ability with the result that it is developing in very fast speed and widespread researched and used in industry and academia. We study the characteristics of fiber optic sensors by applying wavelet transform.
Hence, in this paper, the traditional Fourier analysis is taken as a basis, and the wavelet packet analysis is taken as a comparison. The major objects include: (1) calibration of hydrophones; (2) vibration measurement. In calibration of hydrophones, the experimental results show a 2.72 dB re V/μPa inaccuracies and a 5.3 dB re V/μPa standard deviation by Fourier analysis, but 0.5 dB inaccuracies and 1.6 dB re V/μPa standard deviation by wavelet packet analysis. It shows that the wavelet packet analysis has better analytic ability than that of traditional Fourier analysis. In vibration measurement, we utilize FBG interferometers to measure stable vibration. The experimental results denote that wavelet packet analysis has excellent frequency analytic ability as Fourier analysis. Besides, in obtaining transient characteristic signals induced by falling stones, the results appear that wavelet packet analysis has better resolution and identification capability relative to Fourier analysis.
目次 Table of Contents
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xiii
符號表 xiv
第一章 簡介
1.1 光纖感測研究背景與文獻回顧 1
1.2 小波轉換研究背景與文獻回顧 3
1.3 研究動機 5
1.4 論文結構 6
第二章 小波轉換原理
2.1 傅立葉分析 7
2.2 短時傅立葉轉換 8
2.3 小波分析 10
2.3.1 簡介 10
2.3.2 小波轉換的種類 13
2.3.3 多尺度分析 15
2.3.3.1 近似空間與細部空間 15
2.3.3.2 Mallat 演算法 16
2.3.4 小波包分析 18
第三章 光纖感測原理
3.1 光纖感測原理 19
2.3.1 感測因子 19
2.3.1 干涉現象 20
3.2.水中聽音器 21
3.2.1 簡介 21
3.2.2 水中聽音器之靈敏度計算原理 23
3.2.3 校正原理 24
3.3 光纖光柵感測原理 25
3.3.1 簡介 25
3.3.2 振動感測器原理 26
3.3.3 布拉格波長偏移檢測干涉儀之型式 28
3.2.4 光纖光柵多工感測系統 30
第四章 小波轉換應用於光纖感測器之設計
4.1 校正方法 32
4.1.1 穩態信號 32
4.1.2 暫態信號 33
4.2 小波轉換應用於光纖水中聽音器之靈敏度量測 35
4.2.1 實驗架構 36
4.2.2 標準水中聽音器靈敏度校正量測 37
4.2.3 心軸式光纖水中聽音器靈敏度量測 38
4.3 小波轉換應用於振動感測系統量測 38
4.3.1 小波轉換應用於布拉格光纖光柵振動感測系統量測 39
4.3.1.1 實驗架構 39
4.3.1.2 實際振動感測器架構-平板PZT 41
4.3.1.3 實際振動感測器架構-直流(DC)小馬達 42
4.3.1.4 多工感測系統-同時感測兩個振動源 43
4.3.2 小波轉換應用於落石暫態信號量測 43
4.3.2.1 實驗架構 44
4.2.2.2 單一顆鋼珠撞擊泥板塊 46
4.3.2.3 多顆鋼珠撞擊泥板塊 46
第五章 實驗與結果討論
5.1 小波轉換應用於水中聽音器之靈敏度量測 47
5.1.1 鋼珠撞擊水面量測 47
5.1.2 鋼珠撞擊水下鋼珠量測 49
5.1.3 音效卡頻率響應量測 49
5.1.4 標準水中聽音器的靈敏度量測 51
5.1.5 心軸式水中聽音器的靈敏度量測 58
5.2 小波轉換應用於振動感測系統之信號分析 60
5.2.1 小波轉換應用於FBG 振動感測系統之信號分析 61
5.2.1.1平板型PZT模擬振動源量測 61
5.2.1.2 DC-3V 小馬達振動量測 64
5.2.1.3 多工量測-同時量測兩個振動源 65
5.2.2 小波轉換應用於落石暫態信號分析 67
5.2.2.1 小鋼珠撞擊泥板塊之暫態信號分析 67
5.2.2.2 中鋼珠撞擊泥板塊之暫態信號分析 73
5.2.2.3 大鋼珠撞擊泥板塊之暫態信號分析 74
5.2.2.4 小+中鋼珠撞擊泥板塊之暫態信號分析 76
5.2.2.5 小+中+大鋼珠撞擊泥板塊之暫態信號分析 78
5.2.2.6 實驗討論 80
第六章 結論與未來展望
6.1 結論 82
6.1.1 小波轉換應用於水中聽音器之靈敏度量測 82
6.1.2 小波轉換應用於FBG 振動感測系統之信號分析 83
6.1.3 小波轉換應用於落石暫態信號分析 83
6.2 未來展望 84
參考文獻 85
附圖 91
附表 141
附錄 147
中英文對照表 154
作者簡歷 157
參考文獻 References
1. E. Fukada, “History and recent progress in piezoelectric polymers,” IEEE Trans. UFFC, Vol.47, No.6, pp.1277-1290, 2000.
2. Eric Udd, Fiber optical sensors, pp.274-275, John Wiley and Sons, Inc., New York, 1991.
3. Ashish. M.Vengsarkar, Kent A.Murphy, Tuan A.Tran, and Richard O. Claus, ”Novel fiber optic hydrophone for ultrasonic measurements,” IEEE Ultrasonics Sympostum, pp.603-606, 1988.
4. Fco Javier Madruga, Daniel Gonz á lez, Victor Álvarez, Juan Echevarria, Olga M.Conde, José Miguel, ”Field test of non contact high temperature fiber optic transducer in a steel production plant,” IEEE Optical Fiber Sensors Conference, Technical Digest, Vol.1, pp.483-486, May 2002.
5. J. Chen, and W.J. Bock, “A novel fiber-optic pressure sensor using 1300nm optical components,” IEEE Instrumentation and Measurement Technology Conference, Vol.2, pp.1743-1746, May 2002.
6. J.Mora, A.Diez, J.L.and M.V.Andrés, “A magnetostrictive sensor interrogated by fiber gratings for dc-current and temperature discrimination,” IEEE Photo. Tech. Lett., Vol.12, No.12, pp.1680-1682, 2000.
7. Horatio Lamela Rivera, Jose A. Garcia-Souto, and J.Sanz, ”Measurment of mechanical vibrations at magnetic cores of power transformers with fiber-optic interferometric intrinsic sensor,” IEEE Journal on Selected Topics in Quantum Electronics, Vol.6, No.5, pp.788-797, 2000.
8. Wei He, Hongbo Cheng, Jiachun Mei, and Desheng Jiang, ”Direct measurement of strain-optic effect,” IEEE Optical Fiber Sensors Conference, Technical Digest, pp.171-173, 2002.
9. Gang-Chih Lin, Likam Wang, C. C. Yang, M. C. Shih, and T. J. Chung,“Thermal performance of metal-clad fiber Bragg grating sensors, ”IEEE Photo. Tech. Lett., Vol.10, No.3, pp.406-408, 1998.
10. Sverre Knudsen, and Kjell Blotekjaer, “An ultrasonic fiber-optic hydrophone incorporating a push-pull transducer in a Sagnac interferometer,” J. of Lightwave Technol., Vol.12, No.9, pp.1696-1700, Sep. 1994.
11. C.Wurster, J.Staudenraus, W.Eisenmenger, “The fiber optic probe hydrophone,” IEEE Ultrasonics Symposium, pp.941-944, 1994.
12. Benjamin J.Vakoc, Michel J.F.Digonnet, and Gordon S.Kino, “A novel fiber-optic sensor array based on the Sagnac interferometer,” J. of Lightwave Technol., Vol.17, No.11, pp.2316-2326, Nov. 1999.
13. T.K.Lim, Y.Zhou, Y.Lin, Y.M.Yip, Y.L.Lam, “Fiber optic acoustic hydrophone with double Mach-Zehnder interferometers for optical path length compensation,” Optics Communications, Vol.159, No.46, pp.301-308, 1999.
14. Wilkens, Ch.Koch, W.Molkenstruck, “Frequency response of a fiber-optic dielectric multiplayer hydrophone,” IEEE Ultrasonics Symposium, Vol.2, pp.1113-1116, Oct.2000.
15. Geoffrey A.Cranch, Philip J. Nash, and Clay K.Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sensors Journal, Vol.3, No.1, pp.19-30, Feb. 2003.
16. 劉叔軒, 以雙環桑克結構之雙馬赫-詹德干涉式水下聽音器, pp.19-38, 國立中山大學,電機工程學系碩士論文, 高雄市, 2004.
17. 周遊, 光纖布拉格光柵水下聽音器之構型設計, pp.28-38, 國立中山大學, 電機工程學系碩士論文, 高雄市, 2003.
18. Alan D. Kersey, Michanel A. Davis, Heather J. Patrick, Michel LeBanc, K.P. Koo, “Fiber Grating sensors,” J. of Lightwave Tech., Vol.15, No.8, pp.1442-1461, Aug. 1997.
19. F. Truchetet, O. Laligant Le2i, Université de Bourgogne, France, f.truchetet@u-bourgogne.fr, “Wavelets in industrial applications: a review,” SPIE, Vol.5607, pp. 1-14, November 2004.
20. M. Kobayashi, “Listening for defect: wavelet-based acoustical signal processing in Japan,” SIAM News, Vol.29, No.2, 1996.
21. R.W. Tucker, S.W. Kercel, V.K. Varma, ”Characterization of gas pipeline flaws using wavelet analysis,” Proc. of SPIE 6th int. conf. on Quality Control by Artificial Vision, Vol.5132, pp.485-493, 2003.
22. J. Ramirez-Nino, S. Rivera-Castaneda, V.R. Garcia-Colon, V.M. Castano, ”Analysis of partial discharges in insulating materials through the wavelet transform,” Computational Materials Science, Vol.9, pp. 379-388, 1998.
23. M.C. Tsao, “Application of wavelet-probabilistic network to power quality and characteristic harmonics detection,” Ph.D. Dissertation, Depart. of Electrical Engineering of NSYSU, Taiwan, Jun. 2004.
24. V. Barat, and others ”Wavelet analysis of MFL signal for steel wire rope testing”, Proc.of the 15 th World Congress NDT, Rome, Italy, 2000.
25. W. Batko and A.Mikulski, “Application of wavelet methods to magnetic testing of steel ropes,” Int. Carpathian Control Conf. ICCC’ 2002, pp.33-38, Malenovice, May 27-30, 2002.
26. A. Mikulski, “Application of the wavelet analysis to mine gear rope diagnostic testing processes,” Ph.D. Dissertation, Academy of Mining and Metallurgy, Kracow, 2001.
27. Yang-Lijian, Fong-Haiying, Wong-Yumei, “The application of wavelet transform in magnetic flux leakage test of pipeline,” Proc. of 10th APCNDT, Brisbane, 2001.
28. Yu-Haoran, Wu-Bin, Chen-Liping, “On-line technology of check and measure of oil and gas pipeline by magnetic flux leakage,” Practical Measuring and Testing Techniques, 5, pp.1-9, 1997.
29. H. Briesen, W. Marquardt, “An adaptive multigrid method for steady-state simulation of petroleum mixture separation processes,” Ind. Eng. Chem. Res., Vol.42, pp. 2334-2348, 2003.
30. G.P. Nason, T. Sapatinas, “Wavelet packet transfer function modelling of nonstationary time series,” Statistics and Computing, Vol.12, No.1, pp. 45-56, 2002.
31. M. Antonini, M.Barlaud, P. Mathieu, I. Daubechies, “Image coding using the wavelet transform,” IEEE Trans. on Image Processing, Vol.2, No.2, pp. 205-220, April 1992.
32. R.A. DeVore, B. Jawerth, B.J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. on Information Theory, Vol.38, No.2, pp. 719-746, march 1992.
33. J. Li and S. Lei, “An embedded still image coder with rate-distortion optimization,” IEEE Trans. on Image Processing, Vol.8, No.7, pp. 913-924, Jul. 1999.
34. K.J. Jones, “3D wavelet image processing for apatial and spectral resolution of Landsat images,” Proc. of SPIE, Wavelet Applications V, Vol. 3391, pp. 218-225, 1998.
35. K.J. Jones, “Wavelet image processing: assessment of spatial and spectral resolution of Landsat images,” Proc. of SPIE, Wavelet Applications VII, Vol.4056, pp.137-147, 2000.
36. D.A. Karras, S.A. Karkanis, D. Iakovidis, D.E.Maroulis, B.G.Mertzios, “Support vectormachines for improved defect detection in manufacturing using novel multidimensional wavelet feature extraction involving vector quantization and PCA techniques,” NIMIA-SC2001, Crema (Italy), Oct. 2001.
37. N. Kawagashira, Y. Ohtomo, K. Murakami, K. Matsubara, J. Kawai, P. Carninci, Y. Hayashizaki, S. Kikuchi, “Wavelet profiles: Their application in oryza sativa DNA sequence analysis,” Proc. of IEEE Comp. Soc. Bioinformatics Conf. (CSB’02), Stanford, Aug. pp.167-172, 2002.
38. A. Krishnan, K.B. Li, P. Issac, “Rapide detection of conserved regions in protein sequences using wavelets,” Silico Biology, Vol.4, 2004.
39. H. Li, H. Hu, T. Kobayashi, T. Saga, N. Taniguchi, “Wavelet multi-resolution analysis of dual-plane stereoscopic PIV measurement results in a lobed jet,” 4th International Symposium on Particle Image Velocimetry, Göttingen, Germany, Sep. 17-19, pp.134-138, 2001.
40. NhiR Ta, “A wavelet packet approch to radio singal modulation classification,” Proc. Of the IEEE-SP international symposium on Philadelphia, pp.508-511, Oct. 1994.
41. 王智中,“小波理論應用於旋轉機械故障診斷之分析”,成功大學造船暨船舶機械工程研究所,碩士論文,民國88 年六月。
42. 曾明鴻,“應用小波理論於管路洩漏診斷之研究”,成功大學造船暨船舶機械工程研究所,碩士論文,民國88 年六月。
43. 吳智偉,“小波轉換在橋樑非破壞檢測之應用”,中原大學土木工程研究所,碩士論文,民國90 年6 月。
44. Wang Chang-hong, Huang Xu, “Application of wavelet packet analysis in the de-noising of MEMS vibrating gyro,” PLANS 2004, 26-29 pp.129 – 132, April 2004.
45. Haibo He, Shijie Cheng, Youbing Zhang, and J. Nguimbis, “Home network power-line communication signal processing based on wavelet packet analysis,” IEEE Transactions on Power Delivery, Vol. 20, No. 3, pp.1879-1885, Jul. 2005.
46. Grossmann, A., Morlet, J., “Decomposition of Hardy function into square integrable wavelets of constant shape,” SIAM J. Math. Anal. Vol.15, No.4, pp. 736-783, 1984.
47. S. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.11, No.11, pp.674-693, Jul. 1989.
48. Ingrid Daubechies, “Orthonomal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, Vol. XLI, pp.909-996, 1988.
49. Ingrid Daubechies, “The wavelet transform, time frequency localization and signal analysis,” IEEE Transactions on Information Theory, Vol. 36, No. 5, pp.961-1005, 1990.
50. T. G. Giallorenzi, J. A. Bucaro, A. Danaridge, and G. H. Sigel, “Optical fiber sensor technology,” IEEE J. Quantum Electron, Vol.18, pp.626-665, Apr. 1982.
51. 李永春, 王逸君, 黃祥紋, 于志明, 郭維志, “水下聲響感測器實作應用整合型研究(I)-子計畫二:PVDF壓電是水中聽音器的研究發展與應用”, 第七屆水下技術研討會暨國科會成果發表會, 高雄海洋科技大學, 高雄市, pp. 246~252, 2005。
52. 趙儒民, 李仲祥, 謝銘信, 鄭智文, “水下聲響感測器實作應用整合型研究(I)-子計畫三:微機電型水下聲響感測器之設計製造與應用研究”, 第七屆水下技術研討會暨國科會成果發表會, 高雄海洋科技大學, 高雄市, pp. 253~257, 2005。
53. 林武文, “水下光纖感測器研究光纖感測器元件設計(I)”, 第七屆水下技術研討會暨國科會成果發表會, 高雄海洋科技大學, 高雄市, pp. 264~271, 2005。
54. J.A.Bucaro, N.Lagakos, J.H.Cole, and T.G.Giallorenzi, “Fiber optic acoustic transduction,” in Physical Acoustics, Vol.16, Academic Press, N.Y., pp.385-457, 1982.
55. G. B. Hocker, “Fiber-optic sensing of pressure andtemperature,” Appl. Opt., Vol. 18, No.9, pp.1445-1448, 1979.
56. M.E. Schafer, “Technigues of hydrophone calibration,” in Ultrasonic Exposimetry, M.C. Ziskin and P.A. Lewin edited, CRC Press, London, UK. Chap.8, pp.217-256, 1993.
57. 黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫 (2003),「土石流地聲特性之實驗研究」,第十六卷第一期, pp. 53~64,中國土木水利工程學刊,中華民國九十三年三月。
58. Horatio Lamela Rivera, Jose A. Garcia-Souto, and J. Sanz, “Measurement of mechanical vibrations at magnetic cores of power transformers with fiber-optic interferometric intrinsic sensor, ” IEEE Journal on Selected Topics in Quantum Ectronics , Vol. 6, No. 5, 2000.
59. A. Dandridge and A.D. Kersey, “Overview of Mach-Zender sensor technology and application,” SPIE, Fiber Optic and Laser Sensors Vl, Vol.1985, pp.34-52, 1998.
60. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation- insensitive fibre optic Michelson interferometer,” Electron. Lett., Vol. 27, No. 6, pp. 518-520, 1991.
61. A. Yu and A. S. Siddiqui, “Optical modulators using fibreoptic Sagnac interferometers,” IEE Proc.-Optoelectron., Vol. 141, No. 1, pp. 1-7, 1994.
62. 陳建成, 布拉格光纖光柵振動感測器設計, 國立中山大學, 電機工程學系碩士論文, 高雄市, 2003.
63. Hadley, K.C., and LaHusen, R.G., “Deployment of an acoustic flow-monitor system and example of its application at Mount Pinatubo, Philippines,” EOS, Trans., American Geophysical Union, Vol. 72, pp.67-71, 1991.
64. Itakura, Y., Kamei, N.Takahama, J.I., and Y. Nowa, Y., “Real time estimation of discharge of debris flow by an acoustic sensor,” 14th IMEKO World Congress, New Measurements-Challenges and Visions, Tempera, Finland, Vol. XA, pp. 127-131, 1997.
65. Tungol, N.M., and Regalado, T.M., “Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992,” In Fire and Mud: pp.1023-1032, University of Washington Press, WA., 1996.
66. Itakura, Y., Kitajima, T., Endo, K., and Sawada, T., “A new double-axes accelerometer debris-flow detection system,” The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Rotterdam, Holland, pp. 319-324, 2000.
67. A. Haar, “Theorie der orthogonalen funktionen–systeme,” Mathematische Annalen, Vol.69, pp.331- 371, 1910.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code