Responsive image
博碩士論文 etd-0807107-102239 詳細資訊
Title page for etd-0807107-102239
論文名稱
Title
一個1.8V、12-位元、每秒100萬次取樣速率、管線式類比數位轉換器
A 1.8V 12bits 100-MS/s Pipelined Analog-to-Digital Converter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-27
繳交日期
Date of Submission
2007-08-07
關鍵字
Keywords
比較器、放大器、類比數位轉換器、管線式、低功率
Analog-to-Digital Converter, ADC, Pipeline, Low Power, Amplifier, Comparator
統計
Statistics
本論文已被瀏覽 5710 次,被下載 0
The thesis/dissertation has been browsed 5710 times, has been downloaded 0 times.
中文摘要
隨著數位化產品的迅速發展,對於處於類比世界的我們,對類比與數位訊號的轉換和處理也日益備受重視,然而面對速度越來越快的數位產品,也延伸出對高速的類比數位轉換器的需求,又如果加上可攜性產品的應用,也顯現出類比數位轉換器功率消耗大小的重要性,故學生以高速且低電壓、低功率的概念去設計實作類比數位轉換器。
本論文採用TSMC.18um製程技術,分析管線式類比數位轉換器的架構,設計實做一個12位元,100萬取樣速率且低功率的類比數位轉換器。利用每階段1.5位元的架構,並使用動態比較器及數位錯誤更正電路來取得最後的數位輸出。
Abstract
The digital product increases widely and vastly. Because we live in the analog world, we require a converter to change analog signal to digital one. However, the requirement of analog-to-digital converter is rising due to progress of DSP (Digital Signal Processor). For portable products, the power consumption also needs to take into account. As mentioned above, I will implement a high speed and low power analog to digital converter.
In this thesis, the circuits are designing with TSMC.18 1P6M CMOS process and 1.8V of supply voltage. The speed and resolution of ADC are 100Ms/s and 12bits individually. The pipelined coupling with 1.5bit/stage constitutes the main architecture of analog-to-digital converter. The dynamic comparator is used for lower power. Finally, the output codes are translated by digital correction circuit.
目次 Table of Contents
Chapter 1 Introduction 1
Reading Guidelines 2
Chapter 2 Analog-to-Digital Converter (ADC) 4
2.1 Introduction 4
2.2 Introduction of ADCs 4
2.2.1 Flash ADCs 5
2.2.3 Pipeline ADC 7
2.2.4 Successive Approximation ADC 8
Chapter 3 Specification of ADC 10
Chapter 4 Key design of pipeline ADC 14
4.1. Introduction 14
4.2. KT/C Noise 14
4.3. Switch 16
4.3.1. ON-Resistance 16
4.3.2. Charge Injection 17
4.3.3. Clock Feedthrough 18
4.4. Operational Amplifier 19
4.4.1. DC Gain 19
4.4.2. Bandwidth Requirement 20
4.4.3. A Example: Folded Cascode Amplifier 22
4.5. Comparator 24
4.6. Digital Correction Technique 27
4.6.1. 1.5 bit/stage 27
4.6.2. 2.8 bit/stage 28
4.7. Reference Voltage from Resistor 29
4.8. Sample And Hold Circuit 30
4.9. Power 31
Chapter 5 The implementation of ADC 32
5.1 Switch 33
5.2 Booster circuit 36
5.3 Amplifiers 38
5.4 BIAS circuit 43
5.5 SHA 47
5.6 MDAC 50
5.7 Dynamic Comparator 53
5.10 Digital Correction circuit 62
5.11 Simulation of ADC 63
Chapter 6 Conclusion 67
References 69
參考文獻 References
[1]. T. Cho, “Low-Power Low-Voltage Analog-to-Digital Conversion Techniques Using Pipelined Architectures,” UC Berkeley PhD Thesis, 1995.
[2]. M. Mohajerin, C. Chen and E. Abdel-Raheem, “A new 12-b 40 ms/s, low-power, low-area pipeline ADC for video analog front ends,” IEEE Pacific Rim Conference, pp.597 – 600, Aug. 2005.
[3]. B.K Ahuja, et al., “A 30 Msample/s 12b 110 mW video analog front end for digital camera,” IEEE International Conference of Solid-State Circuits, Vol.1, pp.438 – 479, Feb. 2002.
[4]. D. Kurose, et al., “55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers,” IEEE Journal of Solid-State Circuits, Vol.41, No.7, pp.1589 – 1595, July. 2006.
[5]. J. Francke, Y. Huazhong and L. Rong, “A 10-Bit, 40 MSamples/s Low Power Pipeline ADC for System-on-a-Chip Digital TV Application,” International Semiconductor Conference, Vol.2, pp.421 – 424, Sept. 2006.
[6]. S. Rapuano, et al, “ADC parameter and Characteristics,” IEEE instrumentation & Measurement Magazine, Vol.8, No.5, pp.44 – 54, Dec. 2005.
[7]. R.V.D. Plassche, “CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd,” Kluwer Academic Publ, pp.521 – 522, March. 2003.
[8]. C.-W. Hsu and T.-H. Kuo, “6-bit 500 MHz flash A/D converter with new design techniques,” IEE Proceedings of Circuits, Devices and Systems, Vol.150, No. 5, pp.460-464, Oct. 2003.
[9]. H.C. Tseng and H.H. Ou, “low-power rail-to-rail 6-bit flash ADC based on a novel complementary average-value approach,” International Symposium of Low Power Electronics and Design, pp.252 – 256, Aug. 2004.
[10]. S.C. Hsia and W.C. Lee, “A very low-power flash A/D converter based on CMOS inverter circuit,” Fifth International Workshop of System-on-Chip for Real-Time Applications, pp.107 – 110, July. 2005.
[11]. S.H. Lewis and P.R. Gray, “A Pipelined 5-Msample/s 9-bit analog-to-digital converter,” IEEE Journal of Solid-State Circuits, Vol.22, No.6, pp.954 – 961, Dec. 1987.
[12]. “IEEE standard for terminology and test methods for analog-to-digital converters”, IEEE Instrumentation and Measurement Society of Waveform Measurement and Analysis Technical Committee, June. 2001.
[13]. B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill Co.Inc, pp.420 – 421, pp.37 – 39, 2001.
[14]. O.A. Adeniran and A. Demosthenous, “Optimization of bit-per-stage for low-voltage low-power CMOS pipeline ADCs,” European Conference of Circuit Theory and Design, pp.55 – 58, Vol.2, Sept. 2005.
[15]. Y. Chouia, et al., “14 b, 50 MS/s CMOS front-end sample and hold module dedicated to a pipelined ADC,” Midwest Symposium of Circuits and Systems, Vol.1, pp.353 – 361, July. 2004.
[16]. C.J.B. Fayomi, G.W. Roberts, and M. Sawan, “Low-voltage CMOS analog bootstrapped switch for sample-and-hold circuit: design and chip characterization,” IEEE International Symposium of Circuits and Systems, Vol. 3, pp.2200 – 2203, May. 2005.
[17]. T.N. Andersen, et al., “A cost-efficient high-speed 12-bit pipeline ADC in 0.18um Digital CMOS,” IEEE Journal of Solid-State Circuits, Vol.40, No.7, pp.1506 – 1513, July. 2005.
[18]. S. Sheikhaei, S. Mirabbasi and A. Ivanov, “A 0.35 um CMOS comparator circuit for high-speed ADC applications,” IEEE International Symposium of Circuits and Systems, Vol. 6, pp.6134 - 6137, May. 2005.
[19]. S.H. Lewis, et al., “A 10-b 20-Msamples analog-to-digital converter,” IEEE Journal of Solid-State Circuits,Vol.27, No.3, pp.351 – 358, March. 1992.
[20]. O.A. Adeniran and A. Demosthenous, “Optimization of Bit-per-Stage for Low-Voltage Low-Power CMOS Pipeline ADCs,” European Conference of Circuit Theory and Design, Vol.2, pp.55 – 58, Sept. 2005
[21]. C.S.G. Conroy, D.W. Cline and P.R. Gray, “An 8-b 85-MS/s parallel pipeline A/D converter in 1-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol.28, No.4, pp.447 – 454, April. 1993.
[22]. H. Charkhkar, A. Asadi, and R. Lotfi, “A 1.8V, 10-bit, 40MS/s MOSFET-only pipeline analog-to-digital converter,” IEEE International Symposium of Circuits and Systems, pp. 4, May. 2006.
[23]. J. Li and U.K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE Journal of Solid-State Circuits, Vol.39, No.9, pp.1468 – 1476, Sept. 2004.
[24]. M. Waltari and K.A.I. Halonen, “1-V 9-bit pipelined switched-opamp ADC,” IEEE Journal of Solid-State Circuits, Vol.36, No.1, pp.129 – 134, Jan. 2001.
[25]. L. Sumanen, M. Waltari and K. Halonen, “A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters,” IEEE International Conference of Electronics, Circuits and Systems, Vo.1, pp.32 – 35, Dec. 2000.
[26]. T.B. Cho and P.R. Gray, “A 10 b, 20 Msample/s, 35 mW pipeline A/D converter,” IEEE Journal of Solid-State Circuits, Vol.30, No. 3, pp.166 – 172, March. 1995.
[27]. R. Lotfi, et al., “A 1-V MOSFET-only fully-differential dynamic comparator for use in low-voltage pipelined A/D converters,” International Symposium of Signals, Circuits and Systems, Vol. 2, pp.377 – 380, July. 2003.
[28]. C. Wulff and C. Ytterdal, “0.8V 1GHz dynamic comparator in digital 90nm CMOS technology,” NORCHIP Conference, 23rd, pp.237 – 240, Nov. 2005.
[29]. J. Lloyd and H.S. Lee, “A CMOS op amp with fully-differential gain-enhancement,” IEEE Transactions of Circuits and Systems II: Analog and Digital Signal Processing, Vol.41, pp.241 – 243, March. 1994.
[30]. R.J. BAKER, “CMOS CIRCUIT DESIGN, LAYOUT, AND SIMULATION, 2nd,” John Wiley, pp.132 – 135, Oct. 2005.
[31]. G.W. Roberts, “Calculating distortion levels in sampled-data circuits using SPICE,” IEEE International Symposium of Circuits and Systems, Vol.3, pp.2059 – 2062. May. 1995.
[32]. S. Mallya and J.H. Nevin, “Design procedures for a fully differential folded-cascode CMOS operational amplifier,” IEEE Journal of Solid-State Circuits, Vol.24, No. 6, pp.1737 – 1740. Dec. 1989.
[33]. J. Wang and Y. Qiu, “Analysis and design of fully differential gain-boosted telescopic cascode opamp,” International Conference of Solid-State and Integrated Circuits Technology, Vol.2, pp.1457 – 1460, Oct. 2004.
[34]. S. Runhua and L. Peng, “A gain-enhanced two-stage fully-differential CMOS op amp with high unity-gain bandwidth,” IEEE International Symposium of Circuits and Systems, vol.2, pp.428 – 431, May. 2002.
[35]. B. Shem-Tov, M. Kozak, and E.G. Friedman, “A high-speed CMOS op-amp design technique using negative Miller capacitance,” IEEE International Conference of Electronics, Circuits and Systems, pp.623 – 626, Dec. 2004.
[36]. A. Boni, A. Pierazzi, and C. Morandi, “A 10-b 185-MS/s track-and-hold in 0.35-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol.36, No. 2, pp.195 – 203, Feb. 2001.
[37]. H. Cheng-Chung, and W. Jieh-Tsorng, “A 33 mW 12-bit 100 MHz sample-and-hold amplifier,” IEEE Asia-Pacific Conference of Proceedings, pp.169 – 172, Aug. 2002.
[38]. R. Lotfi, M. Taherzadeh-Sani, and O. Shoaei, “A 1.5-V 12-bit 75M-samples/s fully-differential low-power sample-and-hold amplifier in 0.25um CMOS,” Electronics, IEEE International Conference of Circuits and Systems, Vol.2, pp.814 – 817, Dec. 2003.
[39]. M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei, “A pseudo-class-AB telescopic-cascode operational amplifier,” International Symposium of Circuits and Systems, Vol.1, pp.737 – 740, May. 2004.
[40]. L. Sumanen, et al., “CMOS dynamic comparators for pipeline A/D converters,” IEEE International Symposium of Circuits and Systems, Vol.5, pp.157 - 160, May. 2002.
[41]. S. Mathur, et al., “A 115mW 12-bit 50 MSPS pipelined ADC,” IEEE International Symposium of Circuits and Systems, Vol.1, pp.913 – 916, May. 2002.
[42]. B.M. Min, et al., “A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC,” IEEE Journal of Solid-State Circuits, Vol.38, No.12, pp.2031 – 2039, Dec. 2003.
[43]. P. Jong-Bum, “A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D converter with 400-MHz input bandwidth,” IEEE Journal of Solid-State Circuits, Vol.39, No.8, pp.1335 – 1337, Aug. 2004.
[44]. N. Wang, P. Zhou, “A 10-b 100-MS/s 95mW CMOS ADC IP With Emphasis on Layout Matching,” IEEE Asian Conference of Solid-State Circuits, pp.355 – 358, Nov. 2006.
[45]. I. Echere and M. Boris, “A 12-Bit 75-MS/s Pipelined ADC Using Incomplete Settling,” IEEE Journal of Solid-State Circuits, Vol. 42, No.4, pp.748 – 756. April. 2007.
[46]. H.C. Kim, D.K. Jeong and W. Kim, “A partially switched-opamp technique for high-speed low-power pipelined analog-to-digital converters,” IEEE Transa Transactions of Circuits and Systems I: Regular Papers, Vol.53, No.4, pp.795 –801, April. 2006.
[47]. B. Sedighi, et al., “A 1.5V 150MS/s current-mode sample-and-hold circuit,”
European Conference of Circuit Theory and Design, Vol.2, pp.91 – 94. Sept.
2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.197.123
論文開放下載的時間是 校外不公開

Your IP address is 3.15.197.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code