Responsive image
博碩士論文 etd-0807107-160940 詳細資訊
Title page for etd-0807107-160940
論文名稱
Title
鋅銅與碳鋼管材液壓鼓脹成形之分析
Analysis of tube hydraulic bulge forming of zinc coppers and carbon steels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-29
繳交日期
Date of Submission
2007-08-07
關鍵字
Keywords
碳鋼、鋅銅
Analysis, steel, copper, hydraulic
統計
Statistics
本論文已被瀏覽 5654 次,被下載 4385
The thesis/dissertation has been browsed 5654 times, has been downloaded 4385 times.
中文摘要
相較於傳統沖壓成形技術,管材液壓成形是一種相當新穎之成形技術,但在製程參數及模具設計等相關資料庫與知識技術上仍相當缺乏。
本研究為了進行管材液壓鼓脹成形之各項實驗,利用液壓鼓脹成形試驗機台,將UNS C26800鋅銅銅管、AISI 1215碳鋼鋼管進行鼓脹並測量鼓脹過程中的壓力、鼓脹高度。將上述數據代入液壓鼓脹成形之數學模式以反推UNS C26800鋅銅銅管、AISI 1215碳鋼鋼管塑流應力之初始降服應力σ0、強度係數K值及應變硬化指數n值。此外將管材製成拉伸試片進行單軸拉伸試驗求得材料的σ0、K值及n值,並將兩種數據進行比較。
在實驗方面,以300℃與500℃兩種退火溫度處理過之UNS C26800鋅銅銅管及未退火之AISI 1215碳鋼鋼管為實驗管材,執行相關之實驗工作。另外,亦使用有限元素套裝軟體進行上述之加工條件對鼓脹高度、成形壓力之影響。由實驗與解析結果之比較,探討管材於鼓脹成形過程中之變形機制。
Abstract
In contrast to traditional stamp shaping techniques, tube hydroforming is a realively new shaping technique. But there are still a lack of engineering parameters, mold designs data bases and technique knowledge in this area.

This research conducts various tube hydraulic bulge forming experiments, using hydraulic bulge forming testing machines. The pressure and bulge height for UNS C26800 zinc-copper tubing and AISI 1215 carbon steel tubing are measured. The above data are substituted into a hydraulic pressure bulge mathematic model to derive UNS C26800 zinc-copper and AISI 1215 carbon-steel tubes flow stress parameters of initial yielding stress σ0、coefficient K value and contingency index n value. Moreover, tensile test of the above materials are conducted to the material’s σ0、K and n values. then proceed with a comparison of the two sets of statistics.

In bulge tests, UNS C26800 zinc-copper tube annealed with temperatures of 300℃ and 500℃ and the not-yet annealing AISI 1215 carbon-steel tube without annealing are used. Additionally, finite element package software is used to simulate the bulge-height and forming pressure.
From the comparisons of experimental and analytic results, the deformation mechanisms of tube during the bulge-shaping discussed.
目次 Table of Contents
目錄I
圖目錄VI
表目錄VII
符號說明VIII
中文摘要X
英文摘要XI
第一章 緒論1
1-1 前言1
1-2 THF製程之簡介3
1-2-1 管材液壓成形之影響因素4
1-2-2 成形設備與技術5
1-3 管材液壓鼓脹成形之文獻回顧.6
1-4 本文之研究目的9
1-5 本論文之架構10
第二章 單軸拉伸試驗之實驗結果13
2-1 管材之單軸拉伸試驗.13
2-2 萬能拉伸試驗機13
2-3 拉伸試片之製作13
2-4 材料塑流應力之求得14
2-4-1 異方性r值之求得15
2-5 材料拉伸試驗結果17
2-5-1 拉伸試驗結果17
2-5-2 異方向性r值之求得17
第三章 管材液壓鼓脹成形之試驗26
3-1 管材之液壓鼓脹試驗26
3-2 實驗週邊設備及量測儀器26
3-2-1 管材液壓鼓脹試驗機台26
3-2-2 量測儀器28
3-3 試驗管材之準備.30
3-4 退火處理溫度-時間之設定32
3-4-1 退火之目的32
3-5 模具設計與製作33
3-6 管材之試驗步驟35
3-7 實驗結果與討論36
3-7-1 實驗規劃36
3-7-2 數學模式37
3-7-3 最小均方根法之數學模式推導39
3-7-4 鋅銅管材未退火之鼓脹試驗41
3-7-5 鋅銅管材未退火之鼓脹試驗41
3-7-6 碳鋼管材之鼓脹試驗42
3-8 鼓脹後之塑流應力係數求得42
3-8-1 等方向性鋅銅管材鼓脹後之塑流應力係數42
3-8-2 等方向性碳鋼管材鼓脹後之塑流應力係數43
3-8-3 非等方向性鋅銅管材鼓脹後之塑流應力係數44
3-8-4 非等方向性碳鋼管材鼓脹後之塑流應力係數44
第四章 模擬及實驗結果與討論63
4-1 DEFORM簡介63
4-2 有限元素模擬參數設定64
4-3 有限元素法模擬結果與實驗值之比較65
4-3-1 500℃鋅銅管材65
4-3-2 碳鋼管材實驗結果66
第五章 結論71
5-1 研究結果之概要71
5-2 今後研究之課題72
參考文獻73
參考文獻 References
[1]邱先拿, “管材液壓成形技術之應用狀況與發展動向, ”機械月刊, Vol26, No.10, p.369(2000).
[2]蔡錦文,“管材液壓鼓脹成形之實驗與模擬”, 國立中山大學機械與機電工程研究所碩士論文 (2002)
[3]S. H. Zhang,“Developments in hydroforming”, J. Mater. Process. Technol., Vol.91, p.236 (1999)
[4]F.Dohmann and Ch. Hartl,“Tube hydroforming – research and practical applications”, J. Mater. Process. Technol., Vol.71, p.174 (1997)
[5]姚創文, “車輛工業結構件一體化與輕量化之新趨勢- 管件液壓成形技術之簡介及應用, ” 金屬工業, Vol.34, No.1, p.42 (2000).
[6]S. Fuchizawa, and M. Narazaki,“Bulge test for determining stress-strain characteristics of thin tubes, ” Advanced Technology of plasticity, 4th ICTP, Beijing, China, Vol.1,p.488, September 5-9, 1993.
[7]T. Sokolowski, K. Gerke, M. Ahmetoglu, and T. Altan, “Evaluation of tube formability and material characteristics : hydraulic bulge testing of tubes, ” J. Mater. Process. Technol. Vol.98, p.34 (2000).
[8]T. Altan, M. Koç, Y. Aue-u-lan and K. Tibari, “Formability and Design Issues in Tube Hydroforming, ” Hydroforming of Tubes, Extrusions and Sheet Metals Vol.1, p.105 (1999).
[9]D. M. Woo and P. J. Hawkes, “Determination of Stress/Strain Characteristics of Tubular Materials, ” J. of the Institute of Metals, Vol.96, p.357 (1968).
[10]D. M. Woo, and A. C. Lua, ”Plastic deformation of ansiotropic tubes in hydraulic bulging, ” J. Mater. Process. Technol. Vol.100, p.421 (1978).
[11]S. Fuchizawa, “Influence of plastic anisotropy on deformation of thin-walled tubes in bulge forming, ” Advanced Technology of plasticity, 2nd ICTP, Stuttgart ,Vol.2,p.727 (1987).
[12]K. Yamada, H. Mizukoshi and H. Okada, “Mechanical properties of aluminum alloy tubes for hydroforming, ” The Proceedings of the 51nd Japanese Joint Conference for Technology of Plasticity, p.349 (2000).
[13]M. Koç and T. Altan, ”An overall review of the tube hydroforming (THF) technology, ” J. Mater. Process. Technol. Vol.108, p.384 (2001).
[14]M. Ahmetoglu, and T. Altan, “Tube hydroforming :state-of-the –art and future trends, ” J. Mater. Process. Technol., Vol.98, p.25 (2000).
[15]S. Fuchizawa, M. Narazaki, and A. Shirayori, “Bulge forming of aluminum alloy tubes by internal pressure and axial compression, ” Advanced Technology of plasticity, 5th ICTP, Columbus, Ohio, USA, Vol.1, p.497, October7-10, 1996.
[16]F. Dohmann, A. Böhm and K.-U. Dudziak, “The Shaping of Hollow Shaft-Shaped Workpieces By Liquid bulge forming, ” Advanced Technology of plasticity, ICTP, p.447 (1993).
[17]S. Fuchizawa, “Deformation of Metal Tubes under Hydrostatic Bulge Forming with Closed Die, ” Advanced Technology of Plasticity, Vol.3, p.1543 (1990).
[18]J. K. Banerjee, “Limiting Deformations in Bulge Forming of Thin Cylinders of Fixed Length, ” Int. J. Mech. Sci., Vol.17, p.659 (1975).
[19]S. Fuchizawa, “Influence of strain-hardening exponent on the deformation of thin-walled tube of tube of finite length subjected to hydrostatic internal pressure, ” Advanced Technology of Plasticity,1st ICTP, Tokyo ,Vol.1,p.297 (1984).
[20]D. M. Woo, ”Tube-Bulging under internal pressure and axial force, ” Trans. ASME. vol.95, Ser. H, 4, p.219 (1973).
[21]B. Carleer, G. van der Kevie, L. de Winter and B. van Veldhuizen, “Analysis of the effect of material properties on the hydroforming process of the tubes, ” J. Mater. Process. Technol. Vol.104, p.158 (2000).
[22]林瑞彰,“管材之成形極限研究”, 國立中山大學機械與機電工程研究所碩士論文 (2003)
[23]林義凱,“管材液壓鼓脹成形之成形性分析”, 國立中山大學機械與機電工程研究所博士論文 (2005)
[24]Standard method of tension testing wrought and cast aluminum and magnesium alloy products [metric]. Annual book of ASTM standards section 3; 03.01, p.60 (1993)
[25]A. A. Giordano and F. M. Hsu. “Least square estimation with applications to digital signal processing”, Wiley, New York (1985)
[26]R. Hill,“On Discontinuous Plastic States, with Special Reference of Localized Necking in Thin Sheets”, J. Mech. Phys. Solid, Vol.1, p.19 (1952)
[27]黃勝銘, 呂淮熏, “氣液壓學, ” 高立圖書 (1994).
[28]小栗富士雄與小栗達男共著, 張兆豐主編, “標準機械設計圖表遍覽 改新增補2版”, 臺隆書局 (2001)
[29]Y. M. Hwang and Y. K. Lin , Analysis and finite element simulation of the tube bulge hydroforming process , J. Mater. Process. Technol. , Vol. 125-126 , 821-825 , 2002
[30]黃永茂,林義凱,陳秉鍵,“不繡鋼及碳鋼管材之材料特性探討”, 中國機械工程學會第二十一屆全國學術研討會論文集 (2004)
[31]黃力上,”管件液壓成形時摩擦係數量測之研究”, 國立中山大學機械與機電工程研究所碩士論文 (2004)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code