Responsive image
博碩士論文 etd-0807107-212505 詳細資訊
Title page for etd-0807107-212505
論文名稱
Title
高級淨水程序處理成效與廢水回收再利用可行性之研究-以大高雄地區淨水場為案例-
Assessing the Treatment Efficiency of Advanced Purification Processes and the Feasibility of Wastewater Recycling in Three Drinking Water Treatment Plants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-21
繳交日期
Date of Submission
2007-08-07
關鍵字
Keywords
結晶軟化、生物活性碳濾床、消毒副產物、廢水回收、飲用水配水管網、藍氏飽和指數
pellet softening, DBPs, wastewater recycling, BAC, drinking water transportation pipel
統計
Statistics
本論文已被瀏覽 5666 次,被下載 2738
The thesis/dissertation has been browsed 5666 times, has been downloaded 2738 times.
中文摘要
本研究主要探討的方向有四:(1)比較大高雄地區澄清湖高級淨水場與傳統淨水場(坪頂與鳳山)對於各項飲用水水質處理效能之差異與消毒副產物生成,進而評估高級淨水程序對於提升飲用水水質之成效;(2)藉由澄清湖高級淨水場各處理單元案例對於飲用水之硬度、鹼度與溴酸鹽處理成效,進而評估高級淨水程序對於供水管網腐蝕性之影響與生成致癌性消毒副產物溴酸鹽可能性;(3)評估澄清湖高級淨水場案例之廢水處理單元處理效率與廢水回收再利用之可行性;(4)評估高級淨水程序對於飲用水配水管網腐蝕性與消毒副產物配水管網再生成之可能性。
在比較高級與傳統淨水程序處理效能方面,高級與傳統淨水場對於濁度、鐵、錳、大腸桿菌與總菌落數等水質項目,皆可達到99%以上之去除效果,對於氨氮、亞硝酸鹽氮與硝酸鹽氮皆能符合飲用水水質標準。澄清湖高級淨水場可降低總溶解固體3% ~ 15%,而兩座傳統淨水場所處理後之清水總溶解固體濃度反而較原水濃度有升高之趨勢。澄清湖、坪頂與鳳山淨水場對硬度之處理效率分別為13 ~ 55%、0 ~ 40%與0 ~ 31%。因此以結晶軟化處理設備為主體之澄清湖淨水場較傳統淨水場在硬度方面明顯可達到大幅降低的目的。澄清湖、坪頂與鳳山淨水場對鹼度之處理效率分別為19 ~ 38%、0 ~ 34%與6 ~ 35%,由結果可以發現澄清湖高級淨水設備對於鹼度可達到較佳的處理效率。本研究期間THMS濃度皆能符合目前飲用水水質標準(80 μg/L),其中又以澄清湖淨水場之總三鹵甲烷濃度較其他兩座傳統淨水場為低,因此高級淨水處理程序確實可以減少加氯消毒副產物總三鹵甲烷之生成濃度,同時可發現Chloroform是THMS最主要的物種,而DCAA 是造成HAA5最主要的物種。
在高級淨水單元之處理效率方面,澄清湖淨水場結晶軟化處理單元確實可達到降低水中硬度之效果,其去除效率約6~20 %。在鹼度方面,結晶軟化過程中對於水中的鹼度之去除效率為8~14% ,這是因為在結晶軟化過程中Ca2+會與OH-反應形成不溶解CaCO3沉澱,而導致鹼度降低。在臭氧消毒副產物溴酸鹽方面,其分析值在本研究期間皆低於偵測極限值,溴酸鹽濃度可由最佳化操作來減少可能的生成,例如降低pH值、適當的臭氧劑量與淨水停留時間等等。
在廢水處理單元效能與廢水回收再利用之可行性方面,澄清湖廢水處理各單元對於懸浮固體物可達到48∼99%之去除效率,但是對於氨氮、總有機碳與化學需氧量等水質項目的處理效果有限,其原因為廢水處理單元只是單純的當作混凝沉澱與污泥脫水的替代程序,因此澄清湖淨水場可考慮將廢水回收再利用,除了可增加水資源的利用以及減少廢水排放所造成的環境污染,同時利用高級淨水單元,如臭氧與活性碳單元可持續將有機物、重金屬等氧化加以去除。本研究期間之混合原水氨氮濃度介於0.12 ∼0.14 mg/L,均符合飲用水水源水質標準1 mg/L,上澄液回流至原水入流處進行回收將會增加淨水程序在氨氮項目的負荷量9∼28%;而混合原水總有機碳濃度介於1.22 ∼1.47 mg/L均符合飲用水水源水質標準4 mg/L,上澄液回流至原水入流處進行回收將會增加淨水程序在總有機碳項目的負荷量11∼27%。混合原水化學需氧量介於8.63 ∼10.98 mg/L均符合飲用水水源水質標準25 mg/L,上澄液回流至原水入流處進行回收將會增加淨水程序在化學需氧量項目的負荷量15∼32%,因此廢水回收再利用為可行之操作方式。
在大高雄地區配水管網腐蝕現況方面,澄清湖淨水場結晶軟化設備大幅去除水中硬度、鈣離子濃度與鹼度,使得水中LSI值也隨之降低,將導致配水管網腐蝕性增加,本次研究範圍內大部分水樣的LSI 值均呈現負值,表示水質具有腐蝕的傾向,將使配水管線中的有害物質溶出至自來水中,反而危害人體的健康與飲用水衛生。在配水管網中加氯消毒副產物再生成方面,澄清湖高級淨水場採臭氧消毒程序減少後加氯量,有效降低加氯消毒副產物的生成外,同時有機前質去除較完全,使得加氯消毒副產物在配水管網中再生成之可能性大為降低。
Abstract
The purposes of this study are:(1) comparing the treatment efficiency with advanced and traditional drinking water treatment plants in southern Taiwan;(2) assessing the treatment efficiency and formation of disinfection by-products in advanced water treatment processes;(3) assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units;(4) evaluating corrosion of drinking water transportation pipelines and reproducing of chlorination by-products.
This study found that the removal efficiency of turbidity, iron, manganese, coliform group and total bacterial count were approximately 99% by advanced and traditional purification processes. The concentrations of ammonia-N (NH3-N), nitrite nitrogen and nitrate nitrogen were lower drinking water quality standard. Pellet softening process was designed following coagulation/sedimentation unit to increase 8~14% and 6~20% removal efficiency of alkalinity and total hardness (TH) concentrations. The removal efficiency of total dissolved solids (TDS) was approximately 3~15% by advanced water treatment processes better than traditional water treatment processes. In the formation of disinfection by-products (DBPs), the trihalomethanes (THMS) and haloacetic acid (HAA5) were efficiently decreased by advanced purification processes. Bromate concentrations which lower detection limit were treated by ozonation process during the study periods. Advanced treatment processes should control the dosage of ozone and post-chlorine to avoid production of DBPs.
In wastewater reuse, the treatment efficiency of suspended solids (SS) was 48∼99%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH3-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH3-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.
The Chengcing Lake water treatment plant significantly reduced alkalinity, Ca2+ concentration and TH concentration via pellet softening treatment: however, reducing the Langelier saturation index (LSI) value of water could cause some adverse effects on distribution systems. Operational conditions by Pingding water treatment plant was added base to water can be tried to adjust pH to maintain a slightly positive LSI value, whereas for water with low hardness and alkalinity.
目次 Table of Contents
目 錄
中文摘要 I
英文摘要 IV
目錄 VI
表目錄 XI
圖目錄 XII

第一章 前言 1-1
1.1 研究緣起 ..1-1
1.2 研究目的 ..1-4
1.3 研究內容 ..1-5
第二章 文獻回顧 ...2-1
2.1 大高雄地區水源現況 ..2-1
2.2 大高雄地區自來水供水現況 ..2-3
2.3 澄清湖、坪頂與鳳山淨水場現況 ..2-7
2.4 高級淨水處理程序 ..2-13
2.4.1 臭氧 ..2-13
2.4.2 結晶軟化 ..2-17
2.4.3 活性碳 ..2-18
2.4.4 後臭氧及生物性活性碳 ..2-19
2.5 淨水場廢水來源與回收方式 ..2-22
2.6 配水管網腐蝕性探討 ..2-24
2.6.1 配水管線材質概述 ..2-26
2.6.2 配水管網的腐蝕評估方式 ..2-27
2.6.3 影響管線腐蝕的重要因子 ..2-30
2.7 淨水程序生成之消毒副產物探討 ..2-34
2.7.1 加氯消毒副產物 ..2-35
2.7.2 臭氧消毒副產物 ..2-41
第三章 研究方法 ...3-1
3.1 高級與傳統淨水場處理效能比較 ..3-1
3.2 澄清湖高級淨水單元之成效評估 ..3-3
3.3 澄清湖廢水處理單元效能與廢水回收再利用之可行性探討 ..3-3
3.4 大高雄地區配水管網現況分析 ..3-5
3.4.1 大高雄地區配水管網腐蝕現況評估 ..3-9
3.4.2 加氯消毒副產物於配水管網再生成評估 ..3-10
3.5 水質項目與分析方法 ..3-10
3.5.1 總三鹵甲烷(Trihalomethane, THMS) ..3-12
3.5.2 鹵化乙酸(Haloacetic acids, HAA5) ..3-16
3.5.3 總有機碳(TOC) .3-22
3.5.4 溴酸鹽 (BrO3‾) .3-23
3.5.5 化學需氧量(COD) .3-24
3.5.6 亞硝酸鹽(NO2-) .3-25
3.5.7 硝酸鹽(NO3-) .3-25
3.5.8 氫離子濃度指數(pH) .3-26
3.5.9 濁度(Turbidity) .3-27
3.5.10 總溶解固體(TDS)和懸浮固體(SS) .3-28
3.5.11 氨氮(Nitrogen) .3-28
3.5.12 硬度(TH) .3-28
3.5.13 重金屬項目(鐵與錳) .3-29
3.5.14 大腸桿菌群 .3-30
3.5.15 總菌落數 .3-33
第四章 結果與討論 .4-1
4.1高級與傳統淨水場水質分析結果 .4-1
4.1.1 氫離子濃度指數(pH) .4-1
4.1.2 濁度(Turbidity) .4-3
4.1.3 總溶解固體(TDS) .4-5
4.1.4 硬度(TH) .4-5
4.1.5 鹼度(Alkalinity) .4-8
4.1.6 氨氮(Nitrogen) .4-8
4.1.7 亞硝酸鹽氮(Nitrite)與硝酸鹽氮(Nitrate) .4-11
4.1.8 重金屬項目(鐵與錳) .4-11
4.1.9 微生物項目(大腸桿菌群與總菌落數) .4-14
4.1.10 加氯消毒副產物(總三鹵甲烷與鹵化乙酸) .4-14
4.2澄清湖高級淨水單元水質分析結果 .4-18
4.2.1 硬度(TH) .4-19
4.2.2 鹼度(Alkalinity) .4-20
4.2.3 溴酸鹽(Bromate) .4-21
4.3廢水處理單元效能與廢水回收再利用之可行性探討 .4-21
4.3.1 廢水處理單元成效評估 .4-21
4.3.1.1 懸浮固體(SS) .4-23
4.3.1.2 氨氮(NH3-N) .4-24
4.3.1.3 總有機碳(TOC) .4-25
4.3.1.4 化學需氧量(COD) .4-26
4.3.2廢水回收可行性評估 .4-27
4.4大高雄地區配水管網現況分析 .4-31
4.4.1 配水管網水質分析結果 .4-31
4.4.1.1 pH值 .4-32
4.4.1.2 鹼度 .4-33
4.4.1.3 總溶解固體物 .4-34
4.4.1.4 硬度 .4-35
4.4.1.5 鈣離子 .4-36
4.4.1.6 大高雄地區配水管網腐蝕現況 .4-37
4.4.2 加氯消毒副產物於配水管網再生成現況 .4-40
第五章 結論與建議 .5-1
5.1結論 .5-1
5.1.1 高級與傳統淨水程序處理效能之比較 .5-1
5.1.2 高級淨水單元之處理效能 .5-2
5.1.3 廢水單元之處理效能與廢水回收再利用之可行性 .5-3
5.1.4 大高雄地區配水管網現況 .5-4
5.2 建議 .5-4
參考文獻 .參-1
附錄A 個人發表著作 A-1
附錄B 口試委員意見答覆及處理 B-1


表 目 錄

表2.1 大高雄地區各淨水場供水區域與供水量現況表 2-5
表2.2 澄清湖高級淨水場設備單元簡介表 2-9
表2.3 世界各國總硬度及總溶解固體量濃度一覽表 2-33
表2.4 加氯消毒副產物的種類 2-37
表2.5 去除溴酸鹽之方法與技術一覽表 2-43
表3.1 自來水廠放流水標準 3-4
表3.2 飲用水水源水質標準 3-4
表3.3 大高雄地區全面性(直接供水)調查之監測地區及地點 3-8
表3.4 水質分析方法彙整 3-11
表4.1 水質分析結果彙整 4-2
表4.2 大高雄各淨水場總三鹵甲烷(THMS)主要物種分佈 4-16
表4.3 大高雄各淨水場鹵化乙酸(HAA5)主要物種分佈 4-17
表4.4 澄清湖淨水場各淨水單元採樣點設計 4-18
表4.5 澄清湖淨水場廢水處理單元採樣點設計 4-22
表4.6 澄清湖淨水場水量與水質狀況 4-29

圖 目 錄

圖2.1 大高雄地區淨水場位置示意圖 2-4
圖2.2 澄清湖高級淨水場處理流程圖 2-8
圖2.3 坪頂淨水場處理流程圖 2-11
圖2.4 鳳山淨水場民生用水處理流程圖 2-12
圖2.5 臭氧與溴離子反應路徑圖 2-42
圖3.1 研究流程圖 3-2
圖3.2 澄清湖高級淨水場廢水處理流程圖 3-5
圖3.3 直接供水調查之採樣點示意圖 3-6
圖3.4 大高雄地區直接供水採樣地點示意圖 3-7
圖4.1 大高雄各淨水場原水及清水濁度(Turbidity)變化趨勢圖 4-4
圖4.2 大高雄各淨水場原水及清水總溶解固體物(TDS)變化趨勢圖 4-6
圖4.3 大高雄各淨水場原水及清水硬度(TH)變化趨勢圖 4-7
圖4.4 大高雄各淨水場原水及清水鹼度(Alkalinity)變化趨勢圖 4-9
圖4.5 大高雄各淨水場原水及清水氨氮(Nitrogen)變化趨勢圖 4-10
圖4.6 大高雄各淨水場原水及清水硝酸鹽氮(Nitrate)變化趨勢圖 4-12
圖4.7 大高雄各淨水場原水及清水鐵離子濃度變化趨勢圖 4-13
圖4.8 大高雄各淨水場清水總三鹵甲烷(THMS)濃度及分布 4-15
圖4.9 大高雄各淨水場清水鹵化乙酸(HAA5)濃度及分布 4-17
圖4.10 澄清湖淨水場各淨水單元之硬度(Total Hardness)值 4-19
圖4.11 澄清湖淨水場各淨水單元之鹼度(Alkalinity)值 4-20
圖4.12 澄清湖淨水場各廢水處理單元懸浮固體濃度 4-23
圖4.13 澄清湖淨水場各廢水處理單元懸浮固體處理成效 4-23
圖4.14 澄清湖淨水場各廢水處理單元氨氮濃度 4-24
圖4.15 澄清湖淨水場各廢水處理單元氨氮處理成效 4-24
圖4.16 澄清湖淨水場各廢水處理單元總有機碳濃度 4-25
圖4.17 澄清湖淨水場各廢水處理單元總有機碳處理成效 4-25
圖4.18 澄清湖淨水場各廢水處理單元化學需氧量 4-26
圖4.19 澄清湖淨水場各廢水處理單元化學需氧量處理成效 4-26
圖4.20 澄清湖淨水場各廢水處理單元上澄液之懸浮固體濃度 4-28
圖4.21 澄清湖淨水場各廢水處理單元上澄液之化學需氧量 4-28
圖4.22 四分位等級圖 4-31
圖4.23直接供水用戶端水樣之pH值四分位等級圖 4-32
圖4.24直接供水用戶端水樣之鹼度四分位等級圖 4-33
圖4.25直接供水用戶端水樣之總溶解固體物四分位等級圖 4-34
圖4.26直接供水用戶端水樣之硬度四分位等級圖 4-35
圖4.27直接供水用戶端水樣鈣離子之四分位等級圖 4-36
圖4.28直接供水用戶端水樣LSI之四分位等級圖 4-38
圖4-29大高雄地區配水管網之LSI分佈圖 4-39
圖4-30 直接供水用戶端水樣之總三鹵甲烷(THMs)四分位等級圖 4-40
圖4-31 直接供水用戶端水樣之鹵化乙酸(HAA5)四分位等級圖 4-41
參考文獻 References
參考文獻

中文參考文獻
中興工程顧問股份有限公司(2000),「大高雄地區自來水後續改善工程計畫」(原水取水口上移至高屏溪攔河堰工程、增設高級淨水處理設備)。
江弘斌、吳美炷 (2005),「台水公司各地淨水場清水腐蝕係數調查」,自來水會刊第二十四卷第二期。
李丁來 (2003),「大高雄地區自來水後續改善工程計畫簡介」,自來水會刊第二十二卷第四期。
李偉立 (2006),「輸送管網及高級處理技術影響高雄市自來水水質之探討」,國立中山大學環境工程研究所博士論文。
林哲昌、葉宣顯(2004),「澎湖烏崁海淡廠出水最佳經濟防蝕方式暨符合第三階段飲用水水質標準之研究」,財團法人中興工程顧問社。
陳秋楊等(1999),「飲用水水質標準總硬度與總溶解性固體合宜濃度之研究」,中華民國自來水協會委託計畫。
陳重男 (2001),「薄膜處理在自來水淨水工程上之應用(第二年)」,中華民國自來水協會研究報告。
黃惠玉(2005),「以線上監測水質異常案例探討管網水質維護」,自來水會刊第二十四卷第二期。
樓基中 (2005),「大高雄地區自來水水質提升之調查研究第二年」,台灣省自來水股份有限公司委託計畫報告(93MOEATWC201)。
劉彭譽(2002),「臭氧結合傳統淨水程序控制鳳山水庫原水消毒副產物生成之研究」,逢甲大學環境工程與科學研究所碩士論文。
薛志宏(2002),「管網系統水質維護與管網分析」,自來水會刊第二十一卷第四期。
蔣本基、張怡怡(1990),「飲用水水質標準研究」,行政院環境保護署委託計畫。
蔣本基(1996),「飲用水中消毒副產物調查及處理技術之評估」, 行政院環境保護署。
謝壎煌(2004),「大高雄地區高級淨水處理改善水質策略之經濟評估」,國立中山大學公共事務管理研究所碩士論文。







英文參考文獻
APHA, AWWA, WEF, (1998). “Standard methods for the Examination of Water and Wastewater.” Mrthod 2330B, 20th Edition, American Public Health Association, Washington D. C.
Arora, H., Giovanni, G. D. and Lechevallier, M. (2001). “Spent filter backwash water contaminants and treatment strategies.” Journal of American Water Works Association, 93(5), pp. 100~112.
Arora, H., LeChevallier, M. W. and Dixon, K. L. (1997). “DBP Occurrence Survey.” Journal of American Water Works Association, 89(6), pp. 60~68.
Baribeau, H., Prevost, M., Desjardins, R. and Lafrance, P. (2001). “Changes in chlorine and DOX concentrations in distribution systems.” Journal of American Water Works Association, 93(12), pp. 102~114.
Batterman, S., Zhang, L. and Wang, S. (2000). “Quenching of chlorination disinfection by-product formation in drinking water by hydrogen peroxide.” Wat. Res., 34(5), pp. 1652~1658.
Becker, W. C. and O`Mellia, C. R. (2001). “Ozone: its effect on coagulation and filtration.” Water Science & Technology: Water Supply, 1(4), pp. 81~88.
Boccelli, D. L., Tryby, M. E., Uber, J. G. and Summers, R. S. (2003). “A reactive species model for chlorine decay and THM formation under rechlorination conditions.” Wat. Res., 37(11), pp. 2654~2666.
Cornwell, D. A. and MacPhee, M. J. (2001). “Effects of spent filter backwash recycle on Cryptoridium removal.” Journal of American Water Works Association, 93(4), pp. 153~162.
Dore, M., Merlet, N., Legube, B. and Croue, J. P. (1988). “Interactions between ozone, halogens and organic compounds.” Ozone Sci. Eng., 10(2), pp. 153~172.
Edwards, M. and Benjamin, M. M. (1992). “Effect of preozonation on coagulant-NOM interactions.” Journal of American Water Works Association, 84(8), pp. 63~72.
Edzwald, J. K. and Tobiason, J. E. (2002). “Fate and removal Crytosporidium in a dissolved air flotation water plant with and without recycle of waste filter backwash water.” Water Science and Technology: Water Supply, 2(2), pp. 85~90.
Escobar, I. C. and Randall, A. A. (2001). “Ozone and distribution system biostability.” Journal of American Water Works Association, 93(10), pp. 77~89.
Glaze, W. H., Weinberg, H. S. and Cavanagh, J. E. (1993). “Evaluating the formation of brominated DBPs during ozonation.” Journal of American Water Works Association, 85(1), pp. 96~103.
Golfinopoulos, S. K. (2000). “The occurrence of trihalomethanes in the drinking water in Greece.” Chemosphere, 41(11), pp. 1761~1767.
Haas, C. N., Gupta, M., Chitluru, R. and Burlingame, G. (2002). “Chlorine demand in disinfecting water mains.” Journal of American Water Works Association, 94(1), pp. 97~102.
Hofmann, R. and Andrews, R. C. (2001). “Ammoniacal Bromamines: A review of their influence on bromate formation during ozonation.” Wat. Res., 35(3), pp. 599~604.
Hsu, C. H., Jeng, W. L., Chang, R. M., Chien, L. C. and Han, B. C. (2001). “Estimation of potential lifetime cancer risk for trihalomethanes from consuming chlorinated drink water in Taiwan.” Environment Research 85(2), pp. 77~82.
Jekel, M. R. (1998). “Effects and mechanisms involved in preoxidation and particle separation processes.” Wat. Sci. Tech., 37(10), pp. 1~7.
Kim, W. H., Nishijima, W., Shoto, E. and Okada, M. (1997). “Pilot plant study on ozonation and biological activated carbon process for drinking water treatment.” Wat. Sci. Tech., 35(8), pp. 21~28.
Kirmeyer, G. J., Kirmeyer, M., Martel, K. D., Noran, P. F. and Smith, D. (2001). “Practical guidelines for maintaining distribution system water quality.” Journal of American Water Works Association, 93(7), pp. 62~73.
Kirisits, M. J. and Snoeyink, V. L. (1999). “Reduction of bromate in a BAC filter.” Journal of American Water Works Association, 91(8), pp. 74~84.
Kirisits, M. J., Snoeyink, V. L., Inan, H., Chee-Sanford, J. C., Raskin, L. and Brown, J. C. (2001). “Water quality factors affecting bromate reduction in biologically active carbon filters.” Wat. Res., 35(4), pp. 891~900.
Krasner, S. W., Glaze, W. H., Weinberg, H. S., Daniel, P. A. and Najm, I. N. (1993). “Formation and control of bromate during ozonation of water containing bromide.” Journal of American Water Works Association, 85(1), pp. 73~81.
Langlais, B., Reckhow, D. A. and Brink, D. R. (1991). “Ozone in water treatment application and engineering.” AWWA Research Foundation, Lewis Publishers, INC.
Le Gouellec, Y. A., Cornwell, D. A. and MacPhee, M. J. (2004). “Treating microfiltration backwash.” Journal of American Water Works Association, 96(1), pp. 72~83.
Lee, J., Lee, D. and Sohn, J. (2007). “An experimental study for chlorine residual and trihalomethane formation with rechlorination.” Water Sci Technol., 55 (1-2), pp. 307~313.
Lou, J. C., Lee, W. L. and Han, J. Y. (2006). “Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.” J. Environ. Manage., 82(1), pp. 1~12.
Marhaba, T. F., and Washington, M. (1998). “Drinking water disinfection and by-products: History and current practice.” Advances in Environmental Research, 2(1), pp. 103~105.
Martel, K. D., Kirmeyer, G. J., Murphy, B. M. and Noran, P. F. (2002). “Preventing water quality deterioration in finished water storage facilities.” Journal of American Water Works Association, 94(4), pp. 139~148.
Munavalli, G. R. and Kumar M. S. (2004). “Modified Lagrangian method for modeling water quality in distribution systems.” Water Research, 38(13), pp. 2973~2988.
Nishilima, W., Kim, W. H., Shoto, E. and Okada, M. (1998). “The performance of an ozonation-biological activated carbon process under long term operation.” Wat. Sci. Tech., 38(6), pp. 163~169.
Pearce, G. K., Heijnen, M. and Reckhouse, J. (2002). “Using ultrafiltration membrane technology to meet UK Cryptosporidium regulations.” Membr. Technol., 2002(1), pp. 6~9.
Pinkernell, U. and von Gunten, U. (2001). “Bromate minimization during ozonation: mechanistic considerations.” Environ. Sci. Technol., 35(12), pp. 2525~2531.
Pontius, F. W. (1990). “Water quality and treatment.” Chapter 17, 4th Edition, McGraw-Hill, Inc., New York.
Rodriguez, M. J. and Serodes, J. (2001) “Spatial and temporal evolution of trihalomethanes in three water distribution systems.”, Wat. Res., 35(6), pp. 1572-1586.
Sánchez-Polo, M., Salhi, E., Rivera-Utrilla, J. and von Gunten, U. (2006). “Combination of ozone with activated carbon as an alternative to conventional advanced oxidation processes.” Ozone Sci. Eng., 28(4), pp. 237~245.
Schneider, O. D. and Tobiason, J. E. (2000). “Preozonation effects on coagulation.” Journal of American Water Works Association, 92(10), pp. 74~87.
Scholler, M., van Dijk, J. C. and Wilms, D. (1991). “Fluidized bed pellet reactor to recover metals or anions.” Metal Finishing, 89(11), pp. 46~50.
Servais, P., Billen, G., Ventresque, C. and Bablon, G. P. (1991). “Microbial activity in GAC filters at the choisy-le-roi treatment plant.” Journal of American Water Works Association, 83(2), pp. 62~68.
Siddiqui, M. S. and Amy, G. L. (1993). “Factors affecting DBP foramtion during ozone-bromide reactions.” Journal of American Water Works Association, 85(1), pp. 63~72.
Siddiqui, M. S., Amy, G. L. and Rice, R. G. (1995). “Bromate ion formation: a critical review.” Journal of American Water Works Association, 87(10), pp. 58~70.
Siddiqui, M. S., Amy, G. L. and Murphy, B. D. (1997). “Ozone enhance removal of organic matter from drinking water sources.” Wat. Res., 31(12), pp. 3098~3106.
Singer, P. C. (1999). “Humic substances as precursors for potentially harmful disinfection by-products.” Water Sci. Tech., 40(9), pp. 25~30.
Singer, P. C. and Reckhow, D. A. (1999). “Chemical Oxidation.” In Letterman, R. D. (Eds.) Water Quality and Treatment A Handbook of Community Water Supplies, 5th ed. Chap. 12, McGraw-Hill, INC.
Song, R., Westerhoof, P., Minear, R. and Amy, G. L. (1997). “Bromate minimization during ozonation.” Journal of American Water Works Association, 89(6), pp. 69~78.
Sotelo, J. L., Beltran, F. J., Benitez, F. J. and Beltran-Heredia, J. (1987). “Ozone decomposition in water: kinetic study.” Ind. Emg. Chem.Res., 26, pp. 39~43.
USEPA, “Health risk assessment/characterization of the drinking water disinfection by-product bromate.” Office of Science and Technology. Office of Water. 13 March 1998. Quoted in the Federal Register 63(61), 15, 673~15, 692. FR Document 98~8215, 1998a.
USEPA, “EPA finalizes M/DBP rules, Waterweek 7(49), 1, 1998b.
USEPA, 2006. Intergrated Risk Information System.
von Gunten, U. and Salhi, E. (2003). “Bromate in drinking water a problem in Switzerland.” Ozone Sci. Eng., 25(3), pp. 159~166.
von Gunten, U. and Hoigné, J. (1994). “Bromate formation during ozonation of bromide-containing waters: Interaction of ozone and hydroxyl radical reactions.” Environ. Sci. Technol., 28(7), pp. 1234~1242.
Wang, J. Z., Summers, R. S. and Miltner, R. J. (1995). “Biofiltration Performance: part 1, relationship to biomass.” Journal of American Water Works Association, 87(2), pp. 55~63.
Yuasa, A. (1998). “Drinking water production by coagulation-microfiltration and adsorption-ultrafiltration.” Wat. Sci. Tech., 37(10), pp. 135~146.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code