Responsive image
博碩士論文 etd-0807112-135954 詳細資訊
Title page for etd-0807112-135954
論文名稱
Title
氫氧混合氣注入柴油引擎燃燒室對節能與污染減量之研究
The study of energy saving and pollution reduction by H2/O2 addition to the diesel engine combustion chamber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
167
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-19
繳交日期
Date of Submission
2012-08-07
關鍵字
Keywords
氫氧混合氣、柴油引擎、生質柴油、多環芳香烴化合物、節能
Hydrogen and Oxygen mixture, PAHs, Biodiesel, Diesel engine, Energy saving
統計
Statistics
本論文已被瀏覽 5680 次,被下載 2253
The thesis/dissertation has been browsed 5680 times, has been downloaded 2253 times.
中文摘要
氫因具高熱值及燃燒後無污染的特點,為二十一世紀公認最具潛力之科學性燃料。本研究以氫氧混合氣注入柴油引擎燃燒室,以模擬車輛於市區內之行走之速度40km/hr,設定引擎轉速及扭力分別為1600 rpm、145 Nm之穩態條件運轉,探討純柴油與不同比例氫氧混合氣添加率(0 L/min至70 L/min)混燒,並以引擎性能表現最佳之氫氧混合氣添加率與純柴油及不同比例廢食用生質柴油(0%至30%)混燒,探討對柴油引擎之節能及對排放尾氣中傳統空氣污染物(PM、THC、CO、CO2、NOx)及PAHs排放狀況影響。此外,以數值模擬方式,模擬在不同氫氧混合氣添加率下與純柴油進行混燒之燃燒溫度、燃料燃燒效率及燃燒生成氣體在氣缸內之生成與分布狀況。
當以不同氫氧混合氣添加率與柴油混燒時,引擎制動熱效率(BTE)在0 L/min至40 L/min之氫氧混合氣添加率下並無明顯差異,當氫氧混合氣添加率在50 L/min至70 L/min時則明顯上升,其中在60 L/min之添加率下,引擎之BTE為35.4%最高,與使用純柴油時BTE提升12.6%;另在制動單位燃料消耗率(BSFC)以在60 L/min之16.287 g/bhp-hr為最低,較純柴油之情況下節省約11.72%,顯示在60 L/min之氫氧混合氣添加率下,引擎性能表現最佳。引擎排放尾氣中CO、CO2、THC、PM及PAHs之排放濃度分析是隨著氫氧混合氣添加率之增加呈現下降趨勢,然NOx排放濃度則呈現上升趨勢,此乃因氫氧混合氣之注入提升燃料燃燒效率所致。另氫氧混合氣注入後柴油節約率逐漸下降,在氫氧混合氣添加率為70 L/min時,柴油節約率可達22.13%,而整體油當量(即柴油油當量與氫氧機耗電量之和)亦越高。
在固定氫氧混合氣添加率(60L/min)與純柴油及不同比例生質柴油(5%至30%)混燒時,引擎之BTE由37.0%下降至35.5%,而BSFC則由149.75上升至159.45g/bhp-hr,引擎性能略為下降;30%生質柴油添加時比純柴油之BTE約下降1.5%。引擎排放尾氣之CO、THC及PAHs排放濃度是隨著生質柴油添加比例增加而降低,CO2、NOx及PM排放濃度會隨著生質柴油添加比例增加而上升。
在數值模擬部分,本研究以助燃空氣內不同之氫氧混合氣添加率,分別以0 L/min、30 L/min、60 L/min、70 L/min之氫氧混合氣添加率下,模擬柴油(以C12H26)注入引擎燃燒室燃燒時,對燃燒溫度、燃料燃燒效率及生成氣體之生成分佈,其結果顯示,氫氧混合氣之添加率增加,會提高燃燒溫度及燃燒效率。
Abstract
Hydrogen is generally acknowledged to have a high heat value and emit few pollutants. It has been identified as the fuel with the most potential for the twenty-first century. This study investigates energy saving and pollutant reduction for polycyclic aromatic hydrocarbons (PAHs), hydrocarbons (HCs), carbon monoxide (CO), carbon dioxide (CO2), particulate matter (PM), and nitrogen oxides and a hydrogen (H2) and oxygen (O2) mixture (H2/O2) mixed in a diesel engine combustion chamber. Experimental parameters included a speed of 1600 rpm and a torque of 145 Nm in the steady-state condition. These operating conditions represent a speed of 40km/hr, roughly vehicle speed in an urban area. In this study, premium diesel fuel (PDF) was mixed with H2/O2 at different injection rates. When mixed with PDF, the H2/O2 injection rate was set to 60L/min, while different biodiesel injection rates were used in the diesel engine combustion chamber. In addition, this study used mathematical simulation to model the combustion temperature, combustion efficiency, and combustion gas distribution in the combustion chamber.
The results of PDF mixed under different H2/O2 injection rates showed that the brake thermal efficiency (BTE) did not significantly change when the H2/O2 injection rate rose from 0 L/min to 40L/min, but markedly increased when the H2/O2 injection rate increased from 50 L/min to 70L/min. The best BTE of the diesel engine was 35.4% at an H2/O2 injection rate of 60 L/min, roughly 12.6% higher than PDF. The brake specific fuel consumption (BSFC) was 16.287 g/bhp-hr at an H2/O2 injection rate of 60 L/min, 11.72% lower than PDF. The results of the BTE and BSFC showed that an H2/O2 injection rate of 60 L/min enabled the best performance of the diesel engine. Emissions of CO, CO2, THC, PM, and PAHs fell as the H2/O2 injection rate increased, while the NOx emission increased as the H2/O2 injection rate increased. This was because the addition of H2/O2 improved the combustion efficiency of the fuel. The total oil equivalent saving was about 22.13% compared to neat diesel at an H2/O2 injection rate of 70 L/min.
The BTE decreased from 37.0% to 35.5% while the BSFC increased to 149.75 g/bhp-hr when the PDF was mixed with biodiesel and the injection rate of H2/O2 was set at 60 L/min. These results showed that the performance of the diesel engine declined slightly. The BTE of the 30% biodiesel + PDF decreased roughly 1.5% compared to pure PDF. The emissions of CO, THC, and PAHs decreased as the percentage of biodiesel mixed with PDF increased, but CO2, NOx, and PM increased as the proportion of biodiesel rose.
In the mathematical simulation, H2/O2 was mixed with combustion air at injection rates of 0, 30, 60, and 70 L/min, using C12H26 as the main fuel. The simulation investigated the combustion flame temperature, fuel combustion efficiency, and combustion gas distribution in the diesel engine combustion chamber. The results showed that the combustion temperature and combustion efficiency improved as the H2/O2 injection rate increased.
目次 Table of Contents
謝誌 ii
摘要 iii
Abstract v
目錄 v ii
圖目錄 xi
表目錄 xiv
第一章 前言 1
1.1研究緣起 1
1.2研究目標 3
第二章 文獻回顧 4
2.1能源概況與未來發展 4
2.1.1能源現況 4
2.2氫能的發展與應用 8
2.2.1氫氣的特性 8
2.2.2氫氣的產生方式 10
2.2.3氫氣在引擎燃燒之應用 12
2.2.4氫氣的使用安全與防護 16
2.3多環芳香烴化合物(PAHs) 18
2.3.1 PAHs之定義 18
2.3.2 PAHs之特性 18
2.3.3 PAHs之生成機制 23
2.3.4 PAHs之來源 24
2.3.5 PAHs之危害 30
2.4柴油引擎及污染物排放特徵 . 34
2.4.1柴油引擎運轉方式 . 34
2.4.2柴油引擎之污染排放特徵 . 37
2.5生質柴油的發展 39
2.5.1生質柴油的特性 40
2.5.2生質柴油之製造方式 .40
2.5.3生質柴油對污染排放影響 43
第三章 研究方法 45
3.1 研究設備與方法 45
3.2採樣方法與設備 46
3.2.1柴油引擎 46
3.2.2 氫氧機 47
3.2.3 三相電力分析儀 47
3.2.4生質柴油 48
3.2.5 PAHs採樣 49
3.2.6 排氣取樣設備 49
3.2.7 樣品分析 51
3.3 PAHs分析之品質保證與品質控制 .. 53
3.3.1空白試驗 .. 53
3.3.2 檢量線之配置 . . 53
3.3.3方法偵測極限 .. 54
3.3.4準確度 .. 54
3.3.5精密度 . . 55
3.4燃燒熱流場數值模擬概述 .. 64
3.4.1流場基本假設 . .66
3.4.2燃燒熱流場與污染物之制御方程式 .. 67
3.4.3 RNG k-e 亂流模式 .70
3.4.4壁函數 .71
3.4.5燃燒反應方程式 72
3.4.6初始條件 74
3.4.7邊界條件 74
3.4.8數值計算方法 75
3.5數值解析方法概述 77
3.5.1離散化方法 78
3.5.2 SIMPLE法之壓力速度修正 81
3.5.3計算收斂準則 82
3.5.4網格安排 82
3.5.5初始猜測值之設定 83
3.5.6網格測試與驗證 83
第四章 結果與討論 84
4.1純柴油添加不同氫氧進氣量對柴油引擎性能影響與污染物排放 84
4.1.1不同氫氧混合氣進氣量之制動熱效率 84
4.1.2不同氫氧混合氣進氣量之制動單位燃料消耗率 86
4.1.3 添加不同氫氧進氣量之傳統污染物排放 . 87
4.1.4不同氫氧混合氣進氣量之PAHs排放 94
4.1.5不同氫氧混合氣進氣量之節能效益評估 98
4.2最佳氫氧混合氣進氣量混合不同比例生質柴油注入柴油引擎對性能與污染物排放影響 102
4.2.1最佳氫氧混合氣進氣量混合不同比例生質柴油注入柴油引擎之制動熱效率 102
4.2.2最佳氫氧混合氣進氣量混合不同比例生質柴油注入柴油引擎之制動單位燃料消耗率 103
4.2.3最佳氫氧混合氣進氣量混合不同比例生質柴油注入柴油引擎之傳統污染物排放 104
4.2.4以最佳氫氧氣進氣量混合不同比例生質柴油之PAHs排放 . 111
4.3燃燒熱流場與污染生成氣體分布狀況數值模擬 .114
4.3.1 柴油引擎進氣過程之氣體氣體分布狀況 114
4.3.2 柴油燃燒過程之燃燒流場與氣體組成分佈 115
4.4不同氫氣混合氣添加比例對燃燒之影響 124
4.4.1 不同氫氣添加比例對燃燒溫度之影響 124
4.4.2不同氫氣添加比例對柴油消耗狀況影響 125
4.4.3不同氫氣添加比例對燃燒生成氣體之影響 126
4.4.4不同氫氣添加比例對氮氧化物產生之影響 128
4.4.5不同氫氣添加比例下氫氣之消耗狀況 129
4.4.6數值模擬與實驗結果相關性 131
第五章 結論與建議 .136
5.1結論 .. 136
5.2建議 ..138
參考文獻 139
參考文獻 References
Akio, K., Youki, O., 1987. Mutagenic Activity and PAH Analysis in Municipal

Incinerator. The Science of Total Environment . vol-61, pp.37-49.

Alzueta, M. U., Borruey, M., Callejas, A., Millera, A., Bilbao, R., 2008. An experimental and modeling study of the oxidation of acetylene in a flow reactor”, Combustion and Flame, vol-152, pp.377-386.

Alam, M., Song, J., Acharya, R., Boehman, A., Miller, K., 2001. Combustion and Emission Characteristics of Direct-Injection Diesel Engine When Operation on Shale Oil, Enegry Conversion &Management.

Assessment and Standards Division, 2002, A comprehensive analysis of biodiesel impacts on exhaust emissions, Office of Transportation and Air Quality of the US Environmental Protection Agency,EPA420-P-02-001. Atkinson, K.E., 1978 . An Introduction to Numerical Analysis. John Wiley& Sons, Inc.

Barfknecht, T.R., 1983. Toxicology of Soot. Progress in Engergy and

Combustion Science. Vol-9 , pp.199- 237.

Bisetti F., Chen J.Y., Haweks E. R., Chen J. H., 2008, Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratified mixture for application to HCCI engine modeling, Combustion and Flame, vol-155, pp.571-584.

Bjørseth, A., Ramahl, T., 1983. Sources and Emission of PAH. Handbook of Polycyclic Aromatic Hydrocarbons 1. Marcel Dekker, Inc. New York and Basel.

Bjørseth, A., Ramahl, T., 1983. Sources and Emission of PAH. Handbook of Polycyclic Aromatic Hydrocarbons 1. Marcel Dekker, Inc. New York and Basel.

Bjørseth, A., Becher, G., 1986. PAH in Work Atmospheres: Occurrence and

Determination. CRC Press, Inc. Boca Raton, Florida, ISBN 0-8493-6064-1.

Bulter, J. D. ,Crossley, P., “Preactivity of PAH Adsorbed on soot Particles”

Atomspheric Environment, vol-15, 1985

Carvalho, M. G., 1974. A NOx diagnostic system based on spectral ultraviolet/visible imaging device. Fuel, vol-23, pp.143-201.

Cavalieri, E.L., Rogan, E.G., 1995. Central Role of Radical Cations in Metabolic Activation of Polycyclic Aromatic Hydrocarbons. Xenobiotica vol-25, pp.677- 688.Cope, V.W., Kalkwarf, D.R., 1987. Photooxidation of Selected Polycyclic Aromatic Hydrocarbons and Pyrenequinones Coated on Glass Surfaces. Environment Science Technology .vol-21, pp.643- 648.

Chigier, N. A., 1975 . Pollution Formation and Destruction in

Flames-Introduction. Progress in Engergy and Combustion Science ., vol-1, pp. 3-5.

Chen, K. S., and Tong, C. H.,1997. Modeling of Turbulent Burning Flow and Performance Evaluation of Municipal Solid incineration, ASCE-Journal of Environmental Engineering.

Chen, Y., Bi, X., Mai, B., Sheng, G., Fu, J., 2004. Emission Characterization of Particulate/Gaseous Phase and Size Association for Polycyclic Aromatic Hydrocarbons form Residential Coal Combustion. Fuel.vol- 83, pp.781- 790.

Chen, C.J., Jaw, S.Y., 1998. Fundamentals of Turbulence Modeling. Taylor & Francis.

Chen, K.C., Wang, H.K., Peng, Y.P., Wang, W.C., Chen, C.H., 2008. Effects of Open Burning of Rice Straw on Concentrations of Atmospheric Polycyclic Aromatic Hydrocarbons in Central Taiwan. Air & Waste Management Association.vol- 58, pp.1318- 1327.

Crittenden, A.D., Long, R., 1976. In Carcinogenesis A Comprehensive Survey, vol-1, New York.

Davis, C.S., Fellin, P., Otson, R., 1987. A Review os Sampling Methods for Polynuclear Aromatic Hydrocarbons in Air. Journal of Applied Crystallography.vol- 37, pp.1397-1408.

Desantes, J.M., Bermudez, V., Garcia, J.M., Fuentes, E., 2005. Effects of Current Engine Strategies on the Exhaust Aerosol Particle Size Distribution from a Heavy Duty Diesel Engine. Aerosol Science.vol-36, pp. 1251-1276.

Driscoll J. F., 1987. The Role of the Recirculation Votex in Improve Fuel-Air
Mixing within Swirl Flame. Combustion. Sci. and Tech., vol-51,pp. 77-95.

Dias, J.R., 1987. Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons, Elsevier, Amsterdam.

Durbin, T.D., Collins, J.r., Norbeck, J.M., Smith, M.r., 2000. Effects of Biodiesel, Biodiesel Blends,and a Synthetic Diesel on Emissions from Light Heavy Duty Diesel Vehicles. Environmental Science and Technology .vol-34, pp. 349- 355.

Fairbanks, J.W., 2000. The Diesel Engines Challenge in the New Millennium.

Diesel Engine Emission Reduction Workshop,vol- 6, pp.20-24.

Foster, D. E., and Keck, J. C., 1980. Factors Affecting NOx Formation from

Nitrogen-Containing Fuels. Combustion and Flame. vol-38, pp. 199-209.

Frenklach, M., Clary, D.W., Yuan, T., Gardine, C.W., Stein, S.E., 1985. Detailed Kinetic Modeling of Soot Sybposium (International) on Combustion. The Combustion Institute, Pittsburgh.

Freedman, B., Pryde, E. H., and Mounts, T. L., 1984, Variables affecting the yields of fatty esters fromtransesterified vegetable oils. Journal of the American OilChemists' Society, vol-61, pp.1638-1642.

Grimmer, G., 1983. Environment Carcinogens: Polycyclic Aromatic
Hydrocarbons. Environment Science Technology .vol-24, pp.1581- 1588.

Greenberg, A., Darack., F., Harkov, R., Lioy, P., and Daisey, J., 1985. Polycyclic Aromatic Hydrocarbons in New Jersey: A Comparison of Winter and Summer Concentrations over a Two-year Reriod, Atmospheric Environment, vol-19, pp.1325-1339.

Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environment Science Technology .vol-30, pp.825-832.

Hawley, R.A., Parsons , M.L., 1984, Products obtained during combustion of polymers under simulated incinerator conditions : II. Polystyrene. Journal of Chromatography A, vol-301, pp. 201-210.

Heywood, J.B., 1988. Internal Combustion Engine Fundamentals. New York: McGraw Hill Book Company.

Henaen, K. F., Jensen, M.G., 1997. Chemical and biological characteristics of exhaust emissions from a DI diesel engine fulled with rapeseed oil methy ester (RME).SAE paper 971689.

Hidayet, A., Fikret, K., Ilgi, K. K., 2009. Microbial culture selection for

bio-hydrogen production from waste ground wheat by dark fermentation .

Hydrogen Energr. vol-34, pp.2195-2200.

Howsam, M., Jones, K.C., Ineson, P., 2000. PAHs Associated with the Leaves of

Tree Species. I Concentrations and Profiles. Environmental Pollution. vol-108, pp.413-424.

Hoffman, E.J., Mills, G.L., Latimer, J.S., Quinn, J.G., 1984. Urban Runoff as a Source of Polycyclic Aromatic Hydrocarbons to Coastal Waters. Environment Science Technology.vol-18, pp.580- 587.


Huang, Z.H., Lu, H.B., Jiang, D.M., Zeng, K., Liu, B., Zhang, J.Q., Wang X.B.,2004. Engine performance and emissions of a compression ignition engine operating on the diesel-methanol blends. Proceedings of the Institution of Mechanical Engineers Part D. Journal of Automobile Engineering, vol- 218, pp. 435-447.


Wang, H. K., Cheng, C. Y., Lin, Y. C., Chen, K. S.,2012. Emission reductions of Air Pollutants from a Heavy-duty Diesel Engine Mixed with Various Amounts of H2/O2. Aerosol and Air Quality Research, vol-12, pp. 133–140.
Wang, H. K., Cheng, C. Y., Chen, K. S., Lin, Y. C., Chen, C. B., 2012. Effect of
regulated harmful matters from a heavy-duty diesel engine by H2/O2 addition to the combustion chamber. Fuel, vol-93, pp. 524–527.

Hydrogen Coordination Group, 2003.Hydrogen from Nature Gas and Coal: The

Road to a Sustainable Energy Future, Office of Fossil Energy, USA.IARC,1983. Polynuclear Aromatic Compounds. Part 1. Chemical, Environmental and Experimental Data. Office of Health and Environmental Assessment, US EPA., Washington, D.C.

IARC, 1987. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. International Agency for Research on Cancer (IARC), Supplement 7, Lyons.

International Energy Agency, 2008. Renewables Information, IEA, Paris.

ISO/PDTR, 2001.Basic considerations for safety of hydrogen system, Technique

Report.

Jean, L.B., Anne, M., Olivier, P., Nicolas, M., Nathalie, C., Muriel, S., Pierre, M.,

2001. Particulate PAHs Observed in the Surrounding of a Municipal

Incinerator. Atmospheric Environment .vol-35, pp.6093 - 6104.

Josephy, P.D., 1997. Polycyclic Aromatic Hydrocarbon Carcinogenesis, Molecular Toxicology, Oxford University Press, New York, pp.315- 351.

Josephson. J., 1984. Polynuclear Aromatic Hydrocarbons. Environmental

Science & Technology, vol-18, No 3, pp. 93A-95A

Kaplan, C. R., Shaddix, C. R., Smyth, K. C.,1996. Computations of Enhanced Soot Production inTime-Varying CH4/Air DiffusionFlames., Combustion and Flame, vol-106, pp. 392-405.

Keller, C.D., Bidleman, T.F., 1984. Collection of Airborne Polycyclic Aromatic Hydrocarbons and Other Organic a Glass Fiber Filter Polyurethane Foam System. Atmospheric Environment, vol-18, pp. 837-845.

Karcher, W., 1998. Reference Materials for the Analysis of Polycylic Aromatic Compounds Handbook of Polycylic Aromatic Hydrocarbons. Marcel Dekker Inc.

Katz, M., Chan, C., 1980. Comparative Distribution of Eight Polycyclic Aromatic Hydrocarbons in Airborne Particulates Collected by Conventional High Volume Sampling and by Size Fractionation. Environment Science Technology , vol-14, pp.838-843.

Klaassen, C.D., 1996. Casarett and Doull’s Toxicology: The Basic Science ofPoisons. New York Mc Graw Hill Companies Inc.

Kerminen, V.M., MÄKELÄ, T.E., Ojanen, C.H., Hillamo, R.E., Vilhunen, J.K., Rantanen, L., Havers, N., Bohlen, A.V., Klockow, D., 1997. Characterization of the Particulate Phase in the Exhaust from a Diesel Car. Environment Science Technology . vol-31, pp.1883-1889.Kieser, R.D., 1988. Diesel Engines: Future Trends. Automotive Engineering vol-96, pp 39-46.

Knize, M.G., Salmon, C.P., Pais, P., Felton, J.S., 1999. Food Heating and the Formation of Heterocyclic Aromatic Amine and Polycyclic Aromatic Hydrocarbon Mutagens/Carcinogens. Advances in Experimental Medicine and Biology, vol-459, pp.179-193.

Knothe, G., Sharp, C.A., Ryan, T., 2006. Exhaust emissions of biodiesel,

petrodiesel, neat methyl esters, and alkanes in a new technology engine.

Energy Fuels, vol-20, pp.403-408.

Krahl, J., Munack, A., Bahadir, M., Schumacher, L., Elser, N., 1996.

Review:utilization of rapeseed oil, rapeseed oil methyl ester or diesel fuel:exhaust gas emissions and estimation of environmental effects. SAE paper.

Krishnamurthy, M., Carder, D.K., Thompson, G., Gautam, M., 2007. Cost of Lower NOx Emissions: Increased CO2 Emissions from Heavy Duty Diesel Engines. Atmospheric Environment, vol-41, pp.666-675.

Lai, C.H., Chen, K.S., Wang, H.K., 2009. Influence of Rice Straw Burning on the Levels of Polycyclic Aromatic Hydrocarbons in Agricultural County of Taiwan. Journal of Environmental Sciences, vol-21, pp. 1200-1207.

Lai, C.H., Li, H.C., Chen, K.S., 2009. Source Characterization and Environment Impact of Open Burning of Rice Straw Residues on Polycyclic Aromatic Hydrocarbons in Agricultural County, Taiwan. Journal of Environmental Engineering and Management ,vol-19,pp.79 -88.

Last, R.J., Kruger, M., Durnholz, M., 1995. Emissions and performance characteristics of a 4-stroke, direct injected diesel engine fueled with blends of biodiesel and low sulfur diesel fuel. SAE paper.

Leonardi, A., Burtscher, H., Siegmann,H. C., 1993. Size-Dependent Measurement of Aerosol Photoemission From Particles in Diesel Exhaust. Atmopheric Environment, vol-27a, pp.1251-1254.

Lignell, D. O., Chen, J. H., Smith, P. J., Lu,T., Law, C. K.,2007. The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation, Combustion and Flame, vol-151, pp.2-28.

Li, C.K., Kamens, R.M., 1993. The Use of Polycyclic Aromatic Hydrocarbons as Source Signatures in Receptors Modeling. Atmospheric Environment, vol-27, pp.523-532.

Li, C.T., Lee, W.J., Wu, C.H., Wang, Y.T., 1995. PAH Emission from Waste Ion exchange Resin Incineration. Science of the Total Environment, vol-155, pp.253-266.

Lodge, J.P., 1989. Methods of Air Sampling and Analysis. 3rd ., Lewis

Publishers, Inc., Chelsea, Michigan.

Libby, P.A., Willams, F.A., 1980. Turbulent Reacting Flows. Springer Verlag, Berlin 100.

Ma, F., Wang , J., Wang ,Yu., Wang ,Yefu., Zhong ,Z., Ding , S., Zhao ,S., 2008.

An investigation of optimum control of a spark ignition engine fueled by NG and hydrogen mixture. Hydrogen Energrgy, vol-33, pp. 7592-7606.

Machrafi, H., Cavadias, S., 2008. Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation, Combustion and Flame, vol-155, pp.557-570.

Magnussen, B.F., Hjertager, B.H., 1976. On Mathematcal Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion.16th Symp. (Int.) on Combustion . Comb. Inst., Pittsburg, Pennsylvania, pp.719-729.

Magnussen, B.F., Hjertager, B.W., 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow,19th AIAA Aerospace Meeting, St. Louis, USA.Marcus, G. and Levis, A., 2002. Physics Today.

Magı’n L., Octavio A., Jose’ R.-F.,2007, Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science , vol-34, pp.198-223.Marshall, W., Schumacher, L.G., Howell, S.,1995. Engine exhaust emissionsevaluation of a cummins L10E when fuelled with a biodiesel blend. SAE paper.

Masclet, P., Mouvier, G., Nikolaou, K., 1986. Relative Decay Index and Source of Polycyclic Aromatic Hydrocarbons. Atmospheric Environment, vol-20, pp.439-446.

McCarty, R. D., Hord, J, and Roder, H. M., 1981. Selected properties of hydrogen(engineering design data), U.S. Department of commerce, National Bureau of Standards, Washington, DC, NBS Monograph 168.

Menzie, C.A., Potocki, B.B., Santodonato, J., 1983. Exposure to Carcinogenic PAHs in the Environment. Environment Science Technology , vol-26, pp.1278-1284.

Mi, H.H., Lee, W.J., Wu, T.L., Lin, T.C, Wang, L.C., Chao, H.R, 1996. PAH Emission from a Gasoline Powered Engine. Journal Environment Science Health, vol- 31, pp.1981-2003.

Mumford, J.L., 1987. Lung Cancer and Indoor Air Pollution in Xuanwei, China. Science, vol-235, pp.217-220.

Mi, H.H., Lee, W.J., Chen, C.B., Yang, H.H., Wu, S.J., 2000. Effect of Fuel Aromatic Content on PAH Emission from a Heavy Duty Diesel Engine. Chemosphere, vol-41, pp.1783-1790.

Nielsen, T., 1996. Traffic Contribution of Polycyclic Aromatic Hydrocarbons in the Center of a Large City. Atmospheric Environment, vol-30, pp.3481-3490.

Nielsen, T., 1996. Traffic Contribution of Polycyclic Aromatic Hydrocarbons in the Center of a Large City. Atmospheric Environment, vol-30, pp.3481-3490.

Nisbet, C., LaGcy, P., 1992. Toxic Equivalency Factors (TEFs) for Polycyclic

Aromatic Hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology , vol-16, 290-300.

Park, S.S., Kim, Y.J., Kang, C.H., 2002. Atmospheric Polycyclic Aromatic Hydrocarbons in Seoul, Korea. Atmospheric Environment, vol-36, pp.2917-2924.

Parkinson, P., 1992. Casarett and Doull’s Toxicology: The Basic Science of Poisons, Unit 2: Disposition of toxicants. 5th Ed., New York, Pergamon Press, pp.114-125.

Patakar, S.V., 1989. Numerical Heat Transfer and Fluid Flow. Hemisphere Public Co., New York.

Peterson, C.L., Reece, D.L., 1996. Emissions testing with blends of esters of rapeseed oil fuel with and without a catalytic converter. SAE paper.

Perena, F. P., Ahmed, A. K., 1979. Respirable Particles, Ballinger Publish Co.

Ramdahl, R., Alfheim, I., Rustad, S., and Olsen, T.,1982. Chemosphere, vol-11, pp. 604-611.

Schindler, K. p.,1997. Why Do We Need the Diesel?. SAE paper NO.971676.

Sharp, C.A., Howell, S.A., Jobe. J., 2000. The effect of biodiesel fuels on transient emissions from modern diesel engines, part II: unregulated emissions and chemical characterization. SAE paper.

Semdley, J.M., Williams, A., Bartle, K.D., 1992. A Mechanism for the Formation of Soot Particles and Soot Deposits. Combustion and Flame, vol-91,pp.71-82.
Spotswood, T.M., Badger, K., 1960. The Formation of Aromatic Hydrocarbons at High Temperature Part Ⅸ. The Pyrolysis of Toluene, Ehylbenzene, Propylbenzene and Butylbenzene. Journal of Chemistry Society
(London), pp.4420-4427.

Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Y., Kume, H., Mimura,J., Fujii-Kuriyama, Y. and Ishikawa, T., 2000. Benzo[a]pyrene carcinogenicity is lostin mice lacking the aryl hydrovarbon receptor, Proceeding of National Acadenuc Science, pp. 779-782. USA.

Sisovic, A., Fugas, M., 1997. Smoke Concentration as an Indicator of Polycyclic

Aromatic Hydrocarbons Levels in the Air. Environmental Monitoring and Assessment, vol-45, pp.201-207.

Soontjens, C.D., Holmberg, K., Westerholm, R.N., Rafter, J.J., 1997.

Characterization of Polycyclic Aromatic Compounds in Diesel Exhaust Particulate Extract Responsible for Aryl Hydrocarbon Receptor Activity. Atmospheric Enviromnent, vol- 31, pp.219-225.

Star-CD Manual, 2004. CD adapco Group.

Star-CD Mythology Handbook, 2003. CD adapco Group.

Taiwan MOTC., 2008.Highway travel time survey. Institute of transportation, ministry of transportation and communications, Taiwan.
MOTC-IOT-97-85-5321/ISBN: 978-986-01-4539-7.

Terzi, E., Samara, C., 2004. Gas Particle Partitioning of Polycyclic Aromatic Hydrocarbons in Urban, Adjacent Coastal, and Continental Background Sites of Western Greece. Environmental Science Technology,vol- 38,
pp.4973-4978.

Tsai, P.J., Shih, T.S., Chen, H.L., Lee, W.J., Lai, C.H., Liou, S.H., 2004.

Assessing and Predicting the Exposures of Polycyclic Aromatic Hydrocarbons (PAHs) and Their Carcinogenic Potencies from Vehicle Engine Exhausts to Highway Toll Station Workers. Atmospheric Environment, vol- 38, pp.333-343.

Turns, Bandaru, 1993. Carbon Monoxide Emission from Turbulent Nonpremixed

Jet Flame. Combustion and Flame, vol-94, pp.462-468.

Tuominen, J., Salomss, S., Pyysalo, H., Skytta, E., Tikkanen, L., Nurmela., T., Sorsa, M., Pohjola, V., Sauri, M., Himberg, K., 1988. Polycyclic Aromatic Hydrocarbons and Genotoxicity in Particulate and Vapor Phases of Ambient Air: Effect of Traffic Season and Meteorological Conditions. Environment Science Technology, vol- 22, pp.1228-1234.

US. EPA, 1987. Locating and Estimating Air Emission form Sources of

Polycyclic Organic Matter (POM). EPA-45014-84-007.

Vanka S. P., 1986. Calculation of axisymetric, turbulent, confined diffusion flames, AIAA,vol-24, No.3, pp.462-469.

Wey, M.Y., Shi, J.K., 1997. Effect of Pressure Fluctuations on PAHs Emission and Combustion Efficiency during Incineration. Toxicological and Environmental Chemistry,vol-61,pp.83-98.

Westerholm, R., Li, H., 1994. A Multivariate Statistical Analysis of Fuel Related Polycyclic Aromatic Hydrocarbon Emission from Heavy Duty Diesel Vehicles. Environment Science Technology ,vol-28, pp.965- 972.

Williams, P.T., Baetle, K.D., Andrews, G.E., 1986. The Relation between Polycyclic Aromatic Compounds in Diesel Fuels and Exhaust Particles. Fuel,vol- 65, pp.1150-1158.

Wybraniec, S., De Jong, A.P., 1996. Modified Sampling and Analysis Method for Large Volatility Range Airbone Polycyclic Aromatic Hydrocarbons (PAH) Using Gas Chromatography Mass Spectrometry. Journal of Analytical Chemistry, vol-356, pp.396-402.

Yasuda, K., Kaneko, M., Sugiyma, K., Yashino, H., Otsuka, Y., 1989. Basic Research on the Emission of Polycyclic Aromatic Hydrocarbon Caused by Waste Incineration. Journal of Applied Crystallography,vol- 39, pp.1557-1561.

Yang, H.H., Chiang, C.F., Lee, W.J., Hwang, K.P., Wu, M.F., 1999. Size Distribution and Dry Deposition of Road Dust PAHs. Environment International,vol- 25, pp.585-597.

Yamane, K., Ueta, A., Shimamoto, Y., 2004. Influence of physical and chemical properties of biodiesel fuels on injection, combustion and exhaust emission characteristics in a direct injection compression ignition engine. International Journal of Engine Res, vol-4, pp.249-261.

Zandere, M., 1985. Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, Inc.Zervas, E., Poulopoulos, S., Philippopoulos, C., 2006. CO2 Emissions Change from the Introduction of
Diesel Passenger Cars: Case of Greece. Energy , vol-31, pp.2915-2925.

王雅玢,1994,「交通污染源大氣中多環芳香烴化合物特徵之探討」,國立成功大學環境工程研究所,碩士論文。

王琳麒,1997,「石化廢棄物焚化爐排放多環芳香烴特徵之影響」,國立成 功大學環境工程研究所,碩士論文。

王信凱,2008,「高雄都會區與中部鄉村多環芳香烴化合物濃度特徵之研 究」,國立中山大學環境工程研究所,博士論文。

毛宗強,2008,「氫能-21 世紀的綠色能源」,新文京開發出版股份有限公司。 米孝萱,1998,「移動性污染源排放多環芳香烴化合物之特徵」,國立成功
大學環境工程學系,博士論文。

曲新生、陳發林,2006,「氫能技術」,五南圖書出版股份有限公司 呂局校,2006,「高雄市大氣中多環芳香烴化合物濃度特徵之調查分析」,
國立中山大學環境工程研究所,碩士論文。

汪國禎,2001,「汽車學(三)柴油引擎篇」,台南:復文書局。 林淵淙,2000,「餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵」,國立成功大學環境工程學系,碩士論文。

吳志榮,1997,「金屬鹽類添加劑對苯焚化之 PAHs 生成影響之研究」,東海 大學環境科學系,碩士論文。

莊茂隆,1995,「石化工業區及交通污染源區之多環芳香烴化合物的濃度特 徵與粒徑分佈」,國立成功大學環境工程學系,碩士論文。

周函螢,2008,「燒烤煙霧中多環芳香族碳氫化合物氣、固相與粒徑分布特 性之研究」,輔仁大學公共衛生學系,碩士論文。

經濟部能源局,2010,「能源產業技術白皮書」 歐祥程,2007,「數值模擬應用於均質進氣柴油引擎之排氣污染研究」,國立成功大學系統及船舶機電工程學系研究所碩士論文。

楊錫賢,1998,「大氣環中多環芳香烴化合物與重金屬元素之特徵」,博士 論文,國立成功大學環境工程研究所。

楊淳卉,2011,「不同型式餐飲業餐廚廢氣之污染特性」, 嘉南藥理科技大 學環境工程與科學系,碩士論文。

陳千翔,2006,「大氣多環芳香烴濃度於露天燃燒地區之時空分佈特徵」,
國立中山大學環境工程研究所,碩士論文。

陳康興、袁中新、蔡孟裕、王信凱、李翰杰、黃錦宏、廖坤泉,2007,「中 鋼公司煙囪採樣孔位置下移之研究評估」,中國鋼鐵股份有限公司。

陳康興、林淵淙、王信凱、鄭加佑、黃錦宏、黃亦生、王盈嵐、巫信毅,2011,
「運用柴油引擎富餘電力產氫氧混合氣對柴油引擎節能與污染減量之研 究」,行政院國家科學委員會,NSC 98-2221-E-110-015-MY2。

鄭加佑,「都市垃圾焚化爐二維火焰結構及燃燒效率之探討」,國立中山大學 環境工程研究所碩士論文,1997 年 6 月。

葛應欽、黃吉志、林相如、王姿乃、陳志樑、李建宏,1994,「不吸菸婦女 肺癌流行病學研究」,行政院衛生署,NSC83-0412-B037-049。

賴順安,1999,「鋼鐵廠煙道排放多環芳香烴化合物及金屬元素之特徵」, 國立成功大學環境工程研究所,碩士論文。

蘇銘千、白曛綾、楊欣瑜,2001,「多環芳香烴(PAHS)在水體底泥中之污染 源分佈模式及自然分解效率之研究」, 行政院國家科學委員會專題研究計 畫成果報告

莊國立,2007,「台灣生質柴油應用在柴油車輛對排放特性和引擎性能影響 之研究」,國立台灣大學環境工程研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code