Responsive image
博碩士論文 etd-0807115-131328 詳細資訊
Title page for etd-0807115-131328
論文名稱
Title
以原子層沉積法成長之ZnO/Al2O3超晶格結構
The structures of ZnO/Al2O3 superlattices grown by Atomic Layer Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-29
繳交日期
Date of Submission
2015-09-07
關鍵字
Keywords
氧化鋅、超晶格、原子層沉積系統、氧化鋁、X光反射率
ZnO, Al2O3, superlattices, ALD, XRR
統計
Statistics
本論文已被瀏覽 5715 次,被下載 938
The thesis/dissertation has been browsed 5715 times, has been downloaded 938 times.
中文摘要
本論文使用原子層沉積法 (Atomic Layer Deposition, ALD)交互成長多層氧化鋅與氧化鋁薄膜於c-面藍寶石(即α-Al2O3)基板或(100)矽基板上而形成超晶格多層膜結構。為系統化找尋多層磊晶薄膜的成長條件,起始以單材質薄膜蒸鍍,首先分別由三、四個不同取向,七種不同晶面的基板找尋能取得薄膜的平整度最佳者,再由兩種基板中各取一最佳晶面,亦即α-Al2O3(0001), Si(100), 把氧化鋅對氧化鋁的循環數的比例保持在三比二,總週數期數定在為6、15、30,從而得到固定以300總循環數(number of cycles) 亦即分別為[ZnO30/AlOx20]6、[ZnO12/AlOx8]15、[ZnO6/AlOx4]30具超晶格結構的多層膜。經由X光繞射儀(X-ray Diffraction, XRD)分析後,發現週期厚度越厚,雖然繞射訊號越強,但也發現氧化鋁的含量多寡會影響氧化鋅磊晶的形成與否。因此進行另一組實驗,由於所得30:20,總周期數6的在α-Al2O3(0001)上的樣品具有晶體訊號,在此系列中僅取α-Al2O3(0001)為基板,改變氧化鋅與氧化鋁單位週期的循環數的比例,使之延伸到30:10、30:6、30:4、30:3、30:1,希望藉以找出氧化鋅薄膜出現磊晶結構時氧化鋁層的膜厚限閾值。結果發現當循環數比例為30:3與30:1時,薄膜得以磊晶長成,而且此時鋁與氧原子會沿著纖鋅礦結構堆疊,形成一具纖鋅礦結構特性的[ZnO30/AlOx3]6 與及[ZnO30/AlOx1]6的磊晶超晶格。實驗中的超晶格樣品皆藉著低掠角(grazing angle) X光反射率(X-ray Reflectivity, XRR)量測膜厚及各基板與多層膜間的粗糙度,並且由X光繞射儀的2Θ-ω、低掠角繞射(Grazing Incidence X-ray Diffraction, GIXRD)、Phi Scan、Pole Figure等掃描模式來量測氧化鋅及氧化鋁的晶性結構,透過穿透式電子顯微鏡(Transmission Electron Microscope, TEM)觀察不同週期數及不同氧化鋅與氧化鋁比例不同製程所得之晶體晶性的改變。
Abstract
Attempts were made to grow epitaxial ZnO/AlOx superlattice structures by Atomic Layer Deposition (ALD) at 177˚C on (0001)-oriented sapphire (α-Al2O3) and (100)-oriented Si substrates. In order to systematically search for epitaxial growth conditions, the total numbers of the alternating cycles were first set at 300 and the ratio of the cycle numbers between the ZnO and AlOx kept at 3:2 for each period. The total periods were varied from 6, 15, to 30, ending with three series of superlattices [ZnO30/AlOx20]6, [ZnO12/AlOx8]15, and [ZnO6/AlOx4]30 on both kinds of substrates. Though diffraction signals intensified as the ZnO layer of each period got thicker, increasing numbers of the AlOx cycles would hamper the epitaxy of ZnO. Consequently, due to the sign of crystallinity of [ZnO30/AlOx20]6 on α-Al2O3(0001), another series of experiments were conducted to seek the threshold thickness ratio for epitaxy, the AlOx cycles were reduced from n(ZnO) : n(AlOx) = 30:20 to 30:10, 30:6, 3:4, 30:3 and 30:1. Samples of the cycle ratios of 30:3 and 30:1, namely, the [ZnO30/AlOx3]6 and [ZnO30/AlOx1]6 superlattices , were found to achieve the desired epitaxy, while those of [ZnO30/AlOx4]6 were not, thus putting 30:3 as a threshold ratio. Moreover, the aluminum oxide layers followed their ZnO counterparts to take the Wurtzite structure in epitaxial growth. The thickness and roughness of each layer in the superlattices were measured by X-ray Reflectivity (XRR), while the epitaxial relationships of were determined or tested by combined XRD 2Θ-ω, GIXRD, Φ-Scan, and Pole Figure measurements. High-resolution transmission electron microscope (HRTEM) was also used to investigate the related nanostructures.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 簡介 1
1-1 半導體超晶格(SEMICONDUCTOR SUPERLATTICES) 1
1-2 材料介紹 3
1-2.1 氧化鋅 3
1-2.2 藍寶石基板 4
1-2.3 矽基板 6
第二章 基本原理與儀器介紹 7
2-1 原子層沉積系統 (ATOMIC LAYER DEPOSITION‚ ALD) 7
2-2 X光繞射儀(X-RAY DIFFRACTOMETER‚ XRD)] 11
2-2.1 XRD簡介 11
2-2.2 X-Ray生成原理 11
2-2.3 布拉格定理(Bragg’s law) 12
2-2.4 Bede儀器介紹 13
2-2.5 常見XRD掃描模式 14
2-3 X光反射率(X-RAY REFLECTIVITY‚ XRR) 18
2-3.1 XRR簡介 18
2-3.2 XRR量測基本原理 19
2-3.3 單層膜系統折射率 25
2-3.4 多層膜系統折射率 29
2-3.5 粗糙度(Roughness) 32
2-3.6 XRR 模擬演示 32
2-4 穿透式電子顯微鏡(TRANSMISSION ELECTRON MICROSCOPE, TEM) 36
第三章 實驗設計與前置作業 38
3-1 實驗設計 38
3-2 基板清洗 41
第四章 實驗結果與分析 42
4-1 實驗A 42
4-1.1 XRR Scan 43
4-2 實驗B 52
4-2.1 XRR Scan 53
4-2.2 XRD scan 59
4-2.3 TEM Analysis 64
4-3 實驗C 72
4-3.1 XRD scan 73
第五章 結論 76
參考文獻 77
附錄 A 83
附錄 B 86
參考文獻 References
[1] L. Esaki and R. Tsu, "Superlattice and negative differential conductivity," IBM Journal of Research and Development, vol. 14, p. 61, 1970.
[2] L. V. Keldysh, "Effect of ultrasonics on the electron spectrum of crystals," Soviet Physics Journal, vol. 4, p. 265, 1962.
[3] R. Dingle, W. Wiegmann, and C. H. Henry, "Quantum States of Confined Carriers in Very Thin AlxGa1−xAs-GaAs-AlxGa1−xAs Heterostructures," Physical Review Letters, vol. 33, p. 14, 1974.
[4] R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, "Electronic properties of the GaAs-AlGaAs interface with applications to multi-interface heterojunction superlattices," Surface Science,vol. 98, pp. 90-100, 1980.
[5] P. Manuel, G. A. Sai-Halasz, L. L. Chang, C.-A. Chang, and L. Esaki, "Resonant Raman Scattering in a Semiconductor Superlattice," Physical Review Letters, vol. 37, p. 1701, 1976.
[6] G. H. Döhler, "Electron states in crystals with nipi-superstructure," Physica Status Solidi (b), vol. 52, pp. 79-92, 1972.
[7] K. Ploog, A. Fischer, and et. al, "Use of Si and Be impurities for novel periodic doping structures in GaAs grown by molecular beam epitaxy," Journal of The Electrochemical Society, vol. 128, pp. 400-410, 1981.
[8] K. Ploog, H. Kunzel, and et. al, "Simultaneous modulation of electron and hole conductivity in a new periodic GaAs doping multilayer structure," Applied Physics Letters, vol. 38, p. 870, 1981.
[9] H. Jung, G. H. Döhler, and et. al, "Photoluminescence study of electron-hole recombination across the tunable effective gap in GaAs n-i-p-i superlattices," Solid State Communications, vol. 43, pp. 291-294, 1982.
[10] H. Kunzel, G. H. Döhler, and et. al., "Tunable electroluminescence from GaAs doping superlattices," Applied Physics Letters, vol. 41, p.852, 1982.
[11] A. Onodera, "Novel Ferroelectricity in II-VI Semiconductor ZnO," Ferroelectrics, vol. 267, pp. 131-137, 2002.
[12] T. Hanada, "Basic Properties of ZnO, GaN, and Related Materials," in Advances in Materials Research, T. Yao and D. S.-K. Hong, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 1-19.
[13] P. Vennéguès, J. M. Chauveau, M. Korytov, C. Deparis, J. Zuniga-Perez, and C. Morhain, "Interfacial structure and defect analysis of nonpolar ZnO films grown on R-plane sapphire by molecular beam epitaxy," Journal of Applied Physics, vol. 103, pp. 083525 - 083525-7, 2008.
[14] S. K. Han, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, Y. S. Nam, et al., "Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrates by plasma-assisted molecular-beam epitaxy," Journal of Crystal Growth, vol. 309, pp. 121-127, 2007.
[15] G. Z. Xing, B. Yao, C. X. Cong, T. Yang, Y. P. Xie, B. H. Li, et al., "Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering," Journal of Alloys and Compounds, vol. 457, pp. 36-41, 2008.
[16] T. Shimomura, D. Kim, and M. Nakayama, "Optical properties of high-quality ZnO thin films grown by a sputtering method," Journal of Luminescence, vol. 112, pp. 191-195, 2005.
[17] B. Lin, Z. Fu, Y. Jia, and G. Liao, "Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions," Journal of The Electrochemical Society, vol. 148, p. 110, 2001.
[18] P. Prepelita, R. Mediannu, B. Sbarcea, F. Garoi, and M. Filipescu, "The influence of using different substrates on the structural and optical characteristics of ZnO thin films," Applied Surface Science, vol. 256, p. 1807, 2010.
[19] B. H. Lin, W. R. Liu, S. Yang, C. C. Kuo, C. H. Hsu, W. F. Hsieh, et al., "The Growth of an Epitaxial ZnO Film on Si(111) with a Gd2O3(Ga2O3) Buffer Layer," Crystal Growth & Design, vol. 11, pp. 2846-2851, 2011.
[20] W. R. Liu, B. H. Lin, S. Yang, C. C. Kuo, Y. H. Li, C. H. Hsu, et al., "The influence of dislocations on optical and electrical properties of epitaxial ZnO on Si (111) using a r-Al2O3 buffer layer," The Royal Society of Chemistry, vol. 14, p. 1665, 2011.
[21] T. Suntola, J. Antson, US Patent No. 4-058-430, 1977.
[22] M. Leskela and M. Ritala, "Atomic layer deposition (ALD): from precursors to thin film structures," Thin Solid Films, vol. 409, pp. 138-146, 2002.
[23] K. Inaba, "X-Ray Thin-Film Measurement Techniques I. Overview," The Rigaku Journal, vol. 24, pp. 10-15, 2008.
[24] M. Birkholz, "Principles of X-ray Diffraction," in Thin Film Analysis by X-Ray Scattering: Wiley, 2006, Chap. 1.
[25] S. Kobayashi, "X-Ray Thin-Film Measurement Techniques IV. In-Plane Diffraction Measurements," Rigaku Journal, vol. 26, pp. 3-11, 2010.
[26] K. Nagao and E. Kagami, "X-Ray Thin-Film Measurement Techniques VII. Pole Figure Measurement," Rigaku Journal, vol. 27, pp. 6-14, 2011.
[27] B. Lehr, M. Seufert, G. Wenz, and G. Decher, "Fabrication of poly nanoheterocomposite films via layer-by-layer adsorption," Supramolecular Science, vol. 2, pp. 199-207, 1995.
[28] X. Arysa, A. M. Jonasa, B. Laguittona, A. Laschewsky, and E. Wischerhoff, "Ultrathin multilayers made by alternate deposition of ionenes and polyvinylsulfate: from unstable to stable growth," Thin Solid Films, vol. 327-329, pp. 734-738, 1998.
[29] A. v. d. Lee, L. Hamon, Y. Holl, and Y. Grohens, "Density Profiles in Thin PMMA Supported Films Investigated by X-ray Reflectometry," Langmuir, vol. 17, pp. 7664-7669, 2001.
[30] S. Kobayashi, "X-Ray Thin-Film Measurement Techniques IV. In-Plane Diffraction Measurements," Rigaku Journal, vol. 26, pp. 3-11, 2010.
[31] D. K. Bowen and B. K. Tanner, "Characterization of engineering surfaces by grazing-incidence X-ray reflectivity," Nanotechnology, vol. 4, p. 175, 1993.
[32] H. Kiessig, "Interferenz von Röntgenstrahlen an dünnen Schichten," Annalen der Physik, vol. 402, pp. 769-788, 1931.
[33] L. G. Parratt and C. F. Hempstead, "Anomalous dispersion and scatteringof X-ray," Physical Review Letters, vol. 94, p. 262, 1954.
[34] V. Holý and T. Baumbach, "Nonspecular x-ray reflection from rough multilayers," Physical Review B, vol. 49, p. 10668, 1994.
[35] J. Als-Nielsen and D. McMorrow, "Refraction and reflection from interfaces," in Elements of Modern X-Ray Physics: Wiley, 2011, Chap. 3.
[36] J. Daillant and A. Gibaud, X-Ray and Neutron Reflectivity: Principles and Applications: Springer, 1999, Chap. 6.
[37] M. Tolan, "Reflectivity of x-rays from surfaces," in X-Ray Scattering from Soft-Matter Thin Films: Springer, 1999, Chap. 2.
[38] L. G. Parratt, "Surface Studies of Solids by Total Reflection of X-Rays," Physical Review Letters, vol. 95, p. 359, 1954.
[39] S. L. K. Levick and P. Munroe, User Guide for the Philips CM200 FEG TEM, 2009.
[40] B. Huang, G. Huang, and H. Yang, "Effects of annealing on the crystal structures and blue emission properties of sputtered ZnO films," Journal of Physics B, vol. 405, p. 4101, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code