Responsive image
博碩士論文 etd-0807115-204820 詳細資訊
Title page for etd-0807115-204820
論文名稱
Title
理論解析異種金屬摩擦攪拌銲接之熱傳導與塑性流動
Numerical Studies on Heat Transfer and Plastic Flow of Dissimilar Materials in Friction Stir Welding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-29
繳交日期
Date of Submission
2015-09-07
關鍵字
Keywords
探針工具、摩擦攪拌搭接、異種金屬、塑性流動
material flow, pin tool, dissimilar materials, friction stir lap welding
統計
Statistics
本論文已被瀏覽 5693 次,被下載 46
The thesis/dissertation has been browsed 5693 times, has been downloaded 46 times.
中文摘要
本研究建立一適用於探針式銲接工具之穩態摩擦攪拌搭接模型,同時求解動量守恆方程式、能量守恆方程式與連續方程式、並假設材料之黏度為非牛頓流體。首先利用文獻之實驗結果,其為鋁合金(Al6060)與鈦合金(Ti–6Al–4V)之摩擦攪拌搭接,建立之摩擦攪拌搭接模型與其結果比對並修正輸入參數,接著探討操作參數對工件材料之溫度及塑性流動速度之影響。
模擬結果發現工具與工件接觸面之摩擦產熱為主要熱源,工件之溫度為影響工件材料塑性流動速度之主要因素,且工件材料熱傳導係數影響工件溫度甚鉅。最後推導出異種金屬接合介面大高溫昇經驗公式,適用於工具探針洽與下板工件接觸之條件:
∆T_2=(1+k_Tool/k_1 )^(-1) μ_f 〖〖pωR〗_S〗^3 L_2 (L_1/k_1 +L_2/k_2 +1/h_1 )/(L_1/k_1 +L_2/k_2 ) (108.36/(k_1 〖k_2〗^0.672 )-0.0033)×(-U+20.8)
以鋁鈦合金摩擦攪拌搭接為例,使用平均向下壓力94 MPa、轉速1400 rpm與進給速度20 mm/min,其接合界面溫度達到了擴散接合標準,並且材料尚未融化,可成功產生良好之焊縫,其接合介面溫度介於約520~550°C。
Abstract
In this study, a theoretical model suitable for the friction stir lap welding (FSLW) process is established under the steady-state conditon. The momentum conservation, energy conservation and continuity equations are simultaneously solved to investigate the temperature distribution and material plastic flow of the workpiece. Effects of temperature and strain rate on the effective flow stress are considered. First, the results obtained from this model are compared with those measured from FSLW of alloy 6061 on Ti–6Al–4V in the literature to correct the input parameters. Then, effects of FSLW operating parameters on the temperature distribution, material plastic flow behavior of the workpiece are investigated.
Simulated results show that the contact frictional heating between the tool and workpiece is the main heat source. The material flow speed of the workpiece is significantly influenced by its temperature, and the thermal conductivity of the workpiece has an important effect on its temperature. Finally, for the dissimilar material of FSLW welding mechanism is investigated, and the empirical equation suitable of the steady-state maximum interface temperature rise for the pin contact with lower workpiece is derived as:
∆T_2=(1+k_Tool/k_1 )^(-1) μ_f 〖〖pωR〗_S〗^3 L_2 (L_1/k_1 +L_2/k_2 +1/h_1 )/(L_1/k_1 +L_2/k_2 ) (108.36/(k_1 〖k_2〗^0.672 )-0.0033)×(-U+20.8)
For the FSLW of alloy 6061 (6 mm) on Ti alloy (2.5 mm), the interface temperature between these two sheets can be achieved to about 520~550°C using the tool downward pressure 94 MPa, rotation speed 1400 rpm, and feed rate 20 mm/min.
目次 Table of Contents
審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vi
表次 viii
第一章緒論 1
1.1 摩擦攪拌銲接概論 1
1.2文獻回顧 2
1.3研究目的 5
1.4論文架構 5
第二章 理論模型 6
2.1 熱傳模型 10
2.2 材料塑性流動模型 14
2.3 摩擦模型 16
2.4 邊界條件 19
2.5 數值方法 21
第三章結果與討論 31
3.1 與現有文獻實驗結果比較以及不同下壓力量之影響 34
3.2不同工具轉速對材料之影響 53
3.3不同工具進給速度對材料之影響 60
3.4不同銲接材料對FSLW影響 67
3.5不同熱傳導係數對於工件溫度之影響 76
3.6摩擦攪拌搭接過程中之工件接合介面溫度 78
第四章結論 83
4.1結論 83
4.2未來展望 84
參考文獻 85
參考文獻 References
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith, and C. Dawes, Intl. Patent Application no PCT/GB92/02203 and GB Patent Application 1991. no. 9125978.9.
[2] F. Moller, M. Grden, C. Thomy, F. Vollertsen, Combined laser beam welding and brazing process for aluminium titanium hybrid structures. Physics Procedia, 2011.12: p. 215–223.
[3] S. Chen, L. Li, Y. Chen, J. Dai, J. Huang, Improving interfacial reaction nonhomogeneity during laser welding–brazing aluminum to titanium. Materials & Design, 2011.32: p. 4408–4416.
[4] R. Cao, J.H. Sun, J.H. Chen, Mechanisms of joining aluminium A6061-T6 and titanium Ti-6Al-4V alloys by cold metal transfer technology. Science and Technology of Welding and Joining, 2013.18: p. 425–433.
[5] R.S. Coelho, A. Kostka, S. Sheikhi, J.F. dos Santos, A.R. Pyzalia, Microstructure and mechanical properties of an AA6181-T4 aluminium Alloy to HC340LA high strength steel friction stir overlap weld. Advanced Engineering Materials, 2008.10: p. 961–972.
[6] U. Dressler, G. Biallas, U. Alfaro Mercado, Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Materials Science and Engineering A, 2009.6: p.113–117.
[7] M. Aonuma, K. Nakata, Dissimilar metal joining of 2024 and 7075 aluminium alloys to titanium alloys by friction stir welding. Materials Transactions, 2011.52: p. 948–952.
[8] B. Li, Z. Zhang, Y. Shen, W. Hu, L. Luo, Dissimilar friction stir welding of Ti–6Al–4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties. Materials & Design, 2014.53; p.838–848.
[9] Z. Song, K. Nakata, A. Wu, J. Liao, L. Zhou, Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys. Materials & Design, 2014. 57: p. 269–278.
[10] Y.C. Chen, K. Nakata, Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys. Materials & Design, 2009: p. 469–474.
[11] Y. Chen, Q. Ni, L. Ke, Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys. Transactions of Nonferrous Metals Society, 2012.22: p. 299–304.
[12] M. Krutzlinger, R. Marstatt, S. Suenger, J. Luderschmid, M.F. Zaeh, F. Haider, Formation of joining mechanisms in friction stir welded dissimilar Al-Ti lap joints. Advanced Materials Research, 2014.966–967: p. 510–520.
[13] M.S. Kenevisi, S.M. Mousavi Khoie, M. Alaei, Microstructural evaluation and mechanical properties of the diffusion bonded Al/Ti alloys joint. Mechanics of Materials. 2013.64: p. 69–75.
[14] Z.W. Chen , and S. Yazdanian, Microstructures in interface region and mechanical behaviours of friction stir lap Al6060 to Ti–6Al–4V welds. Materials Science and Engineering A, 2015. 634: p. 37-45
[15] L. Xu, Y.Y. Cui,Y. L.Hao, R.Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Materials Science and Engineering A, 2006. 435–436: p. 638–647.
[16] M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, H. Najafi, Mechanical and Microstructural Characterization of Al-5083/St-12 lap joints made by friction stir welding. Procedia Engineering. 2011.10: p. 3297–3303.
[17] R.S. Coelho, A. Kostka, S. Sheikhi, J.F. dos Santos, A.R. Pyzalia, Microstructure and mechanical properties of an AA6181-T4 aluminium alloy to HC340LA high strength steel friction stir overlap weld. Advanced Engineering Materials. 2008.10: p. 961–972.
[18] Z.W. Chen, S. Yazdanian, G. Littlefair, Effects of tool positioning on joint interface microstructure and fracture strength of friction stir lap Al-to-steel welds. Journal of Materials Science, 2013.48: p. 2624–2634.
[19] M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, H. Najafi, Effect of tool travel and rotation speeds on weld zone defects and joint strength of aluminium steel lap joints made by friction stir welding. Science and Technology of Welding and Joining. 2012.17: p. 162–167.
[20] Kittipong. Kimapong, and Takehiko. Watanabe, Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding. Materials Transactions, 2005.46 : p. 835–841.
[21] Kittipong. Kimapong, and Takehiko. Watanabe, Effect of welding process parameters on mechanical property of FSW Lap joint between aluminum alloy and steel. Materials Transactions, 2005.46 : p. 2211–2217.
[22] J.E. Gould and Z. Feng, Heat flow model for friction stir welding of aluminum alloys. Journal of Materials Processing & Manufacturing Science, 1998. 7: p. 185-194.
[23] Ø. Frigaard, Ø. Grong, and O.T. Midling, A process model for friction stir welding of age hardening aluminum alloys. Metallurgical and Materials Transactions A, 2001. 32A: p. 1189-1200.
[24] M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Science and Technology of Welding & Joining, 2003. 8(3): p. 165-174.
[25] P.A. Colegrove and H.R. Shercliff, Development of Trivex friction stir welding tool. Part 1-Two-dimensional flow modelling and experimental validation. Science and Technology of Welding and Joining, 2004. 9: p. 345-351.
[26] P.A. Colegrove and H.R. Shercliff, Development of Trivex friction stir welding tool. Part 2-Three-dimensional flow modelling. Science and Technology of Welding and Joining, 2004. 9: p. 352-361.
[27] H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 2004. 12: p. 143-157.
[28] M. Song and R. Kovacevic, Numerical and experimental study of the heat transfer process in friction stir welding. Proceedings of the Institution of Mechanical Engineers, 2003. 218 Part B: J. Engineering Manufacture: p. 73-85.
[29] M. Song and R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation. International Journal of Machine Tools & Manufacture, 2003. 43: p. 605-615.
[30] M. Song and R. Kovacevic, Heat transfer modeling for both workpiece and tool in the friction stir welding process: a coupled model. Proceedings of the Institution of Mechanical Engineers 2004. 218 Part B: J. Engineering Manufacture: p. 17-33.
[31] A. Askari, S. Silling, B. London, and M. Mahoney, Modeling and analysis of friction stir welding processes. in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, D.P. Field (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, 2001: p. 43-54.
[32] P. Ulysse, Three-dimensional modeling of the friction stir-welding process. International Journal of Machine Tools and Manufacture, 2002. 42: p. 1549-1557.
[33] P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux, Mechanical and thermal modelling of friction stir welding. Materials Processing Technology, 2006. 171: p. 348-357.
[34] J.H. Cho, D.E. Boyce, and P.R. Dawson, Modelling of strain hardening during friction stir welding of stainless steel. Modelling and Simulation in Materials Science and Engineering, 2007. 15: p. 469-486.
[35] R. Nandan, G.G. Roy, and T. Debroy, Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding. Metallurgical and Materials Transactions A, 2006. 37A: p. 1247-1259.
[36] R. NANDAN, B. PRABU, A. DE, and T. DEBROY, Improving Reliability of Heat Transfer and Materials Flow Calculations during Friction Stir Welding of Dissimilar Aluminum Alloys. Welding Journal, 2007. 86: p. 313s-322s.
[37] R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Materialia, 2007. 55: p. 883-895.
[38] B.C. Liechty and B.W. Webb, Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools & Manufacture, 2008. 48: p. 1474-1485.
[39] H. Atharifar, D. Lin, and R. Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding. Journal of Materials Engineering and Performance, 2009. 18: p. 339-350.
[40] 力偉倫,摩擦模型應用於摩擦攪拌銲接過程熱傳導與材料流動之理論與實驗研究,國立中山大學,機電研究所,碩士論文. 2013.
[41] 林嘉彬,探針銲接工具應用於摩擦攪拌銲接過程熱傳導與材料流動之理論研究,國立中山大學,機電研究所,碩士論文. 2014.
[42] Zienkiewicz, O. C., and Cormeau, I. C, Visco-plasticity—plasticity and creep in elastic solids—a unified numerical solution approach. International Journal of Numerical Methods in Engineering, 1974. 8: p. 821–845.
[43] Sheppard, T., and Wright, D. S, Determination of flow stress: Part 1 constitutive equation for aluminium alloys at elevated temperatures. Metals Technology, 1979. 6: p. 215–223.
[44] T. Sheppard; A. Jackson, Constitutive equations for use in prediction of flow stress during extrusion of aluminium alloys. Materials Science and Technology, 1997. 13: p. 203-209.
[45] N.S. Reddya, You Hwan Leeb, Chan Hee Parka, Chong Soo Leea, Prediction of flow stress in Ti–6Al–4V alloy with an equiaxed α + β microstructure by artificial neural networks. Materials Science and Engineering: A, 2008. 492: p 276-282.
[46] Patrick F. Kozlowski, Brian G. Thomas, Jean A. Azzi, Hao Wang, Simple constitutive equations for steel at high temperature. Metallurgical Transactions A, 1992. 23: p. 903-918.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code