Responsive image
博碩士論文 etd-0807115-233454 詳細資訊
Title page for etd-0807115-233454
論文名稱
Title
電池電源模組建構之儲釋能系統
Energy Storage System with Battery Power Modules
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-15
繳交日期
Date of Submission
2015-09-08
關鍵字
Keywords
容錯機制、電池電源模組、儲釋能系統
battery power module (BPM), energy storage system, fault tolerance
統計
Statistics
本論文已被瀏覽 5640 次,被下載 292
The thesis/dissertation has been browsed 5640 times, has been downloaded 292 times.
中文摘要
本文闡述由電池電源模組(Battery Power Modules, BPMs)組成之儲釋能系統。儲釋能系統最小的基本單元為BPM,由電池、雙向轉換器及附屬控制器組成。雙向轉換器可接收外部指令,控制開關導通率,調節電池之充放電功率。串聯BPM(Series BPMs, SBPMs) 可提高儲釋能系統運作之電壓;並聯BPM (Parallel BPMs, PBPMs)則可增加系統電流。將BPM先串後並或先並後串成為陣列式架構 (Arrayed BPMs, ABPMs)之大型儲釋能系統可執行大規模功率與能量的調節。儲釋能系統之所有BPM可個別控制,相互支援。電池放電時,轉換器可以根據各BPM中之電池電量,適當地分配各BPM功率,合力提供負載需求,調節輸出電壓;充電時,則可依據使用者需求,利用充電器之最大功率,用最快的速度完成充電。此外,BPM可藉由控制雙向轉換器,將部分電池自系統切離。因此,當電池充電完成、電量耗盡或發生故障時,可將電池隔離,不須中斷系統運作。
本文討論由升/降壓型與降升壓型BPM串並聯充放電的運作情形,經由適當的控制策略,融合平衡與容錯機制,調整各BPM開關導通率,達到能量調節與電池平衡充放效果。
Abstract
This thesis studies the energy storage system constructed by battery power modules (BPMs). A BPM is the basic unit of the system, which is composed of a battery set, a bidirectional converter and the associated sensing and control circuit. To aggregate a high voltage and current, a number of BPMs can be connected in series and parallel, as series BPMs (SBPMs) and parallel BPMs (PBPMs), respectively. A much larger system is formed by arrayed BPMs (ABPMs) which is a combination of SBPMs and PBPMs. In such system configurations, the duty-ratios of the bidirectional converters in all BPMs can be individually modulated so that the charging and discharging current of all batteries can be appropriately coordinated under different operating conditions. During the discharging process, the powers of BPMs are scheduled according to the state of charges (SOCs) of the batteries. Throughout the charging process, the BPMs draw the maximum usable power from the charger to charge the batteries as fast as possible. In addition, the completely exhausted or damaged batteries can be isolated without interrupting the system operation.
The charging and discharging operations of SBPMs, PBPMs and ABPMs with bidirectional boost/buck-type and buck-boost-type BPMs are discussed. Experimental tests demonstrate that the energy storage system configured by BPMs can perform the designated power distribution for both charging and discharging.
目次 Table of Contents
目錄
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖表目錄 vii
符號表 ix
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 1
1-3 論文大綱 2
第二章 電池應用概述 3
2-1 電池簡介 3
2-2 電池包裝與使用 4
2-3 電池電量估測 6
2-4 定電流定電壓充電法 7
第三章 電池電源模組架構與操作 9
3-1 電池電源模組概念 9
3-1-1 CCM、DCM與參數關係 11
3-1-2同步整流技術 13
3-2 串聯電池電源模組架構 13
3-3 並聯電池電源模組架構 14
3-4 陣列式電池電源模組架構 16
3-4-1先串後並 17
3-4-2先並後串 18
3-5 漣波與平均相位移控制 18
3-6 電池隔離 21
3-7 容錯機制 23
第四章 儲釋能系統充放電策略 26
4-1 電池電量平衡 26
4-2 最大與最小電流充電法 27
4-3 電量平衡點與比例電流充電法 29
4-4 有載電壓放電法 31
4-5 充放電策略規劃 31
第五章 BPM儲釋能系統運作 33
5-1 升/降壓型BPM並聯放電 33
5-1-1放電策略 34
5-1-2實驗電路 35
5-1-3實例驗證 36
5-2 降升壓型BPM並聯充電 39
5-2-1充電策略 39
5-2-2實驗電路 41
5-2-3實例驗證 43
5-3 降升壓型BPM串聯充電 45
5-3-1充電策略 46
5-3-2實驗電路 47
5-3-3限制電源電流之充電實例 49
5-3-4限制電源功率之充電實例 51
5-4 降升壓型BPM串聯放電 53
5-4-1放電策略 53
5-4-2實驗電路 55
5-4-3實例驗證 57
5-5 陣列式降升壓型BPM放電操作 59
5-5-1先串後並ABPM放電策略 60
5-5-2先串後並ABPM放電實例 60
第六章 結論與未來展望 64
參考文獻 67
參考文獻 References
參考文獻
[1] H. Oman, Aug. 2000, “Battery Developments That Will Make Electric Vehicles Practical,” IEEE Aerospace and Electronic Systems Magazine, Vol. 15, No. 8, pp. 11-21.
[2] 楊模樺,“電動車輛用鋰電池發展趨勢”,電動車輛產業資訊專刊,2008年11月。
[3] S. West and P. T. Krein, Sep. 2000, “Equalization of Valve-Regulated Lead-Acid Batteries: Issue and Life Test Results,” IEEE International Telecommunications Energy Conference, INTELEC 2000, pp. 439-446.
[4] 謝耀慶,“串聯電池組之電量平衡”,國立中山大學電機工程研究所博士論文,2003年6月。
[5] C. S. Moo, Y. C. Hsieh, I. S. Tsai, and J. C. Cheng, Sep. 2003, “Dynamic Charge Equalization for Series-Connected Batteries,” IEEE Transactions on Electric Power Applications, Vol. 150, No. 5, pp. 501-505.
[6] Y. C. Hsieh, S. P. Chou, and C. S. Moo, June 2004, “Balance Discharge for Series-Connected Batteries,” IEEE Power Electronics Specialists Conference, PESC 2004, Vol. 4, pp. 2697-2702.
[7] C. Karnjanapiboon, K. Jirasereeamornkul, and V. Monyakul, July 2009, “High Efficiency Battery Management System for Serially Connected Battery String,” IEEE International Symposium on Industrial Electronics, ISIE 2009, pp. 5-8.
[8] J. Kim, J. Shin, C. Chun, and B. H. Cho, Jan. 2012, “Stable Configuration of a Lithium-Ion Series Battery Pack Based on a Screening Process for Improved Voltage/Soc Balancing,” IEEE Transactions on Power Electronics, Vol. 27, No. 1, pp. 411-424.
[9] P. Li, Y. Pan, Y. Ma, and Q. Qin, Aug. 2011, “Study on an Active Voltage Equalization Charge System of a Series Battery Pack,” IEEE Electronic and Mechanical Engineering and Information Technology, EMEIT 2011, Vol. 1, pp. 141-144.
[10] N. H. Kutkut and D. M. Divan, Oct. 1996, “Dynamic Equalization Techniques for Series Battery Stacks,” IEEE International Telecommunications Energy Conference, INTELEC 1996, pp. 514-521.
[11] F. Feng, R. Lu, G. Wu, and C. Zhu, Oct. 2012, “A Measuring Method of Available Capacity of Lithium-Ion Series Battery Pack,” IEEE Vehicle Power and Propulsion Conference, VPPC 2012, pp. 389-394.
[12] F. Wen, J. C. Jiang, W. G. Zhang, and H. P. Guo, Sep. 2008, “Research on the Charge Mode of Series-Connected Batteries,” IEEE Vehicle Power and Propulsion Conference, VPPC 2008, pp. 1-5.
[13] Y. H. Zhang, J. G. Li, J. Lin, and J. F. Ge, Nov. 2009, “A Charging Equalization Circuit with Odd and Even Module for Lithium-Ion Series-Connected Batteries,” IEEE Artificial Intelligence and Computational Intelligence, AICI 2009, Vol. 1, pp. 553-557.
[14] H. X. Shen, W. L. Zhu, and W. X. Chen, March 2010, “Charge Equalization Using Multiple Winding Magnetic Model for Lithium-Ion Battery String,” IEEE Asia-Pacific Power and Energy Engineering Conference, APPEC 2010, pp. 1-4.
[15] H. S. Park, C. E. Kim, C. H. Kim, G. W. Moon, and J. H. Lee, May 2009, “A Modularized Charge Equalizer for an HEV Lithium-Ion Battery String,” IEEE Transactions on Industrial Electronics, Vol 56, No. 5, pp. 1464-1476.
[16] Y. Huang and C. K. Tse, May 2007, “Circuit Theoretic Classification of Parallel Connected DC-DC Converters,” IEEE Transactions on Circuits and Systems, Vol. 54, No. 5, pp. 1099-1108.
[17] L. Shiguo, Y. Zhihong, L. L. Ray, and F. C. Lee, July 1999, “A Classification and Evaluation of Paralleling Methods for Power Supply Modules,” IEEE Power Electronics Specialists Conference, PESC 1999, Vol. 2, pp. 901-908.
[18] L. Balogh, 2003, “Paralleling Power : Choosing and Applying the Best Technique for Load Sharing,” Texas Instruments Seminar.
[19] Y. Guo, Oct. 1998, “Design Considerations for Low Voltage High Current Parallel Power Module Systems,” IEEE International Telecommunications Energy Conference, INTELEC 1998, pp. 249-254.
[20] J. W. Kim, H. S Choi, and B. H. Cho, Jan. 2002, “A Novel Droop Method for Converter Parallel Operation,” IEEE Transactions on Power Electronics, Vol. 17, No. 1, pp. 25-32.
[21] H. S Ban, J. M. Lee, H. S. Mok, and G. H. Choe, June 2001, “Load Sharing Improvement in Parallel-Operated Lead Acid Batteries,” IEEE International Symposium on Industrial Electronics, ISIE 2001, Vol. 2, pp. 1026-1031.
[22] Y. Q. Hu and H. P. Liu, June 2010, “Design of Management System for LiFePO4 Power Batteries Group,” IEEE International Conference on Electrical and Control Engineering, ICECE 2010, pp. 5110-5113.
[23] J. Chatzakis, K. Kalaitzakis, N.C.Voulgaris, and S.N. Manias, Oct. 2003 “Designing a New Generalized Battery Management System,” IEEE Transactions on Industrial Electronics, Vol. 50, pp. 990-999.
[24] D. Xu, L. Wang, and J. Yang, June 2010, “Research on Lithium-Ion Battery Management System,” IEEE International Conference on Electrical and Control Engineering, ICECE 2010, pp. 4106-4109.
[25] M. X. Zheng, B. J. Qi, and H. J. Wu, June 2008, “A Lithium-Ion Battery Management System Based on CAN-Bus for Electric Vehicle,” IEEE Conference on Industrial Electronics and Applications, ICIEA 2008, pp. 1180-1184.
[26] 黃廣順,“電池電源模之架構與運轉”,國立中山大學電機工程研究所博士論文,2009年6月。
[27] S. Rudy and A. Jack, MOSPOWER Applications Handbook. Siliconix Inc., CA, 1984.
[28] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronic-Converters, Applications, and Design. John Wiley & Sons Inc., 2003.
[29] R. W. Erickson, D. Maksimović, Fundamentals of Power Electronics. Kluwer Academic Pub., 2001.
[30] 梁適安,“交換式電源供應器之理論與實務設計”,全華書局,2008年9月,修訂版。
[31] D. Linda and T. B. Reddy, “Handbook of batteries,” The 3rd edition, McGraw-Hall Companies, Inc., 2001.
[32] B. C. Ummels, E. Pelgrum, and W. L. Kling, March 2008, “Integration of Large-Scale Wind Power and Use of Energy Storage in the Netherlands Electricity Supply,” IET Renewable Power Generation, Vol. 2, No. 1, pp. 34-46.
[33] S. Rahman, Jan. 2003, “Green Power: What is it and Where Can We Find it,” IEEE Power Energy Magazine, Vol. 1, No. 1, pp. 30-37.
[34] E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, May 2007, “Energy Storage Devices for Future Hybird Electric Vehicles,” Journal of Power Sources, Vol. 168, pp. 2-11.
[35] M. B. Camara, F. Gustin, H. Gualous, and A. Berthon, Sep. 2009, “Energy Management Strategy for Coupling Supercapacitors and Batteries with DC-DC Converters for Hybrid Vehicle Applications,” IEEE Power Electronics and Motion Control Conference, EPE-PEMC 2008, pp. 1542-1547.
[36] W. Hong, K. S. Ng, J. H. Hu, and C. S. Moo, June 2010, “Charge Equalization of Battery Power Modules in Series,” in IEEE Power Electronics Conference, pp. 1568-1572.
[37] C. S. Moo, K. S. Ng, and J. S. Hu, Feb. 2009, “Operation of Battery Power Modules with Series Output,” IEEE International Conference on Industrial Technology, ICIT 2009, pp. 1-6.
[38] C. H. Kim, H. S. Park, and G. W. Moon, June 2008, “A Modularized Two-Stage Charge Equalization Converter for Series Connected Lithium-Ion Battery Strings in an HEV,” IEEE Power Electronics Specialists Conference, PESC 2008, pp. 992-997.
[39] 蕭英男,“返馳式轉換器之功因修正電路模組並聯運轉”,國立中山大學電機工程研究所碩士論文,2005年6月。
[40] C. S. Moo, K. S. Ng, and Y. C. Hsieh, “Parallel Operation of Battery Power Modules,” IEEE Transaction on Energy Conversion, June 2008, Vol. 23, No. 2, pp. 701-707.
[41] R. V. White, March 2006, “Using Redundant DC Power in High Availability Systems,” in Proc. APEC, pp. 848-853.
[42] B. T. Irving and M. M. Jovanovic, Feb. 2000, “Analysis, Design, and Performance Evaluation of Droop Current-Sharing Method,” IEEE Applied Power Electronics Conference, APEC 2000, pp. 253-241.
[43] J. S. Glaser and A. F. Witulski, Jan. 1994, “Output Plane Analysis of Load-Sharing in Multiple Module Converter Systems,” IEEE Transactions on Power Electronics, Vol. 9, No. 1, pp. 43-50.
[44] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, Jan. 1998, “Charge Equalization for An Electric Vehicle Battery System,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 1, pp.235-246.
[45] P. T. Krein and R. S. Balog, Oct. 2002, “Life Extension through Charge Equalization of Lead-Acid Batteries,” IEEE International Telecommunications Energy Conference, INTELEC 2002, pp. 516-523.
[46] Y. S. Lee and M. W. Cheng, Oct. 2005, “Intelligent Control Battery Equalization for Series Connected Lithium-Ion Battery Strings,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1297-1307.
[47] Y. C. Hsieh, C. S. Moo, and I. S. Tsai, May 2002, “Balance Charging Circuit for Charge Equalization,” in IEEE Power Conversion Conference, PCC 2002, Vol. 3, pp. 5-8.
[48] Z. Nie, and M. C, Sep. 2009, “Fast Battery Equalization with Isolated Bidirectional DC-DC Converter for PHEV Applications,” IEEE Vehicle Power and Propulsion Conference, VPPC 2009, pp. 78-81.
[49] W. G. Hurley, Y. S. Wong, and W. H. Wolfle, June 2009, “Self-Equalization of Cell Voltages to Prolong the Life of VRLA Batteries in Standby Applications,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 2115-2120.
[50] 歐陽文億,“串聯電池組雙向電量平衡電路”,國立中山大學電機工程研究所碩士論文,2005年6月。
[51] Y. C. Hsieh, W. C. Chen, K. S. Ng, and C. S. Moo, April 2007, “Investigation on Operating Characteristics of Individual Cells in a Lead-Acid Battery Pack,” The 4th Power Conversion Confreence, PCC 2007, Nagoya Japan, pp.745-750.
[52] T. Horiba, T. Maeshima, T. Matsumura, M. Koseki, J. Arai, and Y. Muranaka, Aug. 2005, “Applications of High Power Density Lithium Ion Batteries,” Journal of Power Sources, Vol. 146, No. 1-2, pp. 107-110.
[53] S. J. Huang, B. G. Huang, and F. S. Pai, Nov. 2012, “An Approach to Measurements of Electrical Characteristics of Lithium-Ion Battery with Open-Circuit Voltage Function,” IET Power Electronics, Vol. 5, pp. 1968-1975.
[54] Z. Ding, S. Wang, W. Zhao, and M. Qu, Aug. 2010, “Study About Lithium Battery’s Characteristics,” IEEE Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, pp. 639-642.
[55] C.C. Hua and Z.W. Syue, June 2010, “Charge and Discharge Characteristics of Lead-Acid Battery and LiFePO4 Battery,” IEEE Power Electronics Conference, IPEC 2010, pp. 1478-1483.
[56] J. Wang, Z. Sun, and X. Wei, Sep. 2009, “Performance and Characteristic Research in LiFePO4 Battery for Electric Vehicle Applications,” IEEE Vehicle Power and Propulsion Conference, VPPC 2009, pp. 1657-1661,.
[57] Y. C. Hsieh, C. S. Moo, T. J. Tsai, and K. S. Ng, June 2011, “High-Frequency Discharging Characteristics of LiFePO4 Battery,” IEEE Conference on Industrial Electronics and Applications, ICIEA 2011, pp. 953-957.
[58] L. Palma and P. Enjeti, June 2007, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability,” IEEE Power Electronics Specialists Conference, PESC 2007, pp. 2633-2638.
[59] “二次電池比較表”,台灣立凱電能科技股分有限公司,2009年。
[60] S. Piller, M. Perrin, and A. Jossen, June 2001, “Methods for State-of-Charge Determination and Their Applications,” Journal of Power Sources, Vol. 96, No. 1, pp. 113-120.
[61] S. Pang, J. Farrell, D. Jie, and M. Barth, June 2001, “Battery State-of-Charge Estimation,” IEEE American Control Conference, ACC 2001, Vol. 2, pp. 1644-1649.
[62] I. Kurisawa and M. Iwata, Oct. 1997, “Internal Resistance and Deterioration of VRLA Battery-Analysis of Internal Resistance Obtained by Direct Current Measurement and Its Application to VRLA Battery Monitoring Technique,” IEEE International Telecommunications Energy Conference, INTELEC 1997, pp. 687-694.
[63] A. Kawamura and T. Yanagihara, May 1998, “State of Charge Estimation of Sealed Lead-Acid Batteries Used for Electric Vehicles,” IEEE Power Electronics Specialists Conference, PESC 1998, Vol. 1, pp. 583-587.
[64] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, June 2005, “State-of-Charge Indication in Portable Applications,” IEEE International Symposium on Industrial Electronics, ISIE 2005, Vol. 3, pp. 1007-1012.
[65] 陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程研究所碩士論文,2007年6月。
[66] Cell type UR18650A specification, Sanyo, Japan, 2008.
[67] Cell type ANR26650M1-B specification, A123 Systems, MA, 2012.
[68] 余立人,“串聯電池電源模組平衡放電”,國立中山大學電機工程研究所碩士論文,2012年7月。
[69] 胡錦欣,“電池電源模組之輸出串聯運轉”,國立中山大學電機工程研究所碩士論文,2009年6月。
[70] 洪瑋,“串聯電源模組之電池平衡充電”,國立中山大學電機工程研究所碩士論文,2010年7月。
[71] 詹家福,“陣列式升壓型電池電源模組之架構與分析”,國立中山大學電機工程研究所碩士論文,2010年7月。
[72] 林琨翔,“升壓式電池電源模組並聯運轉”,國立中山大學電機工程研究所碩士論文,2013年6月。
[73] 張舉申,“具人機介面之降昇壓式電池電源模組並聯充電”,國立中山大學電機工程研究所碩士論文,2014年7月。
[74] 簡振宇,“串聯降升壓式電池電源模組充電策略”,國立中山大學電機工程研究所碩士論文,2013年4月。
[75] 侯至豪,“降升壓型電池電源模組串並聯平衡放電”,國立中山大學電機工程研究所碩士論文,2013年6月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code