Responsive image
博碩士論文 etd-0807116-020557 詳細資訊
Title page for etd-0807116-020557
論文名稱
Title
利用光場和電場調變三維液態光子晶體能隙之特性研究
Study of Modulating Three-Dimension Photonic Liquid Crystal Band Gap Based on Optical and Electrical Tuning
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-22
繳交日期
Date of Submission
2016-09-08
關鍵字
Keywords
能隙調控、光子晶體、液晶、藍相液晶
bandgap modulation, photonic, blue phase liquid crystal, liquid crystal
統計
Statistics
本論文已被瀏覽 5696 次,被下載 33
The thesis/dissertation has been browsed 5696 times, has been downloaded 33 times.
中文摘要
藍相液晶為自組裝的三維光子晶體,藍相液晶存在的溫度範圍非常狹窄,在應用上有所限制,可藉由聚合物形成穩固型藍相液晶。雖然拓寬了藍相的溫度範圍,卻同時失去其光子能隙的調控性。先前我們開發利用聚合物中的酯類官能基捕獲正離子的特性,達到調控聚合物穩固型藍相液晶之光子能隙的方法。施加直流電壓時,聚合物受負極的吸引,造成聚合物受到拉伸,連帶改變藍相液晶的晶格常數同時拓寬藍相液晶存在的溫度範圍,並且能藉由電場進行調控。
本論文的研究目標為探討不同聚合參數的聚合物穩固型藍相液晶,調控其光子能隙的特性。不同液晶盒厚度下和光起始劑濃度,造成聚合物的分佈的不同,受到直流電壓影響,造成聚合物的拉伸的差異性,導致調控光子能隙的效果不同,分別為光子能隙位移(Shift)和光子能隙拓寬(Broadening)。並且摻雜可照光離子化的光起始劑材料,照射紫外光後引致離子源和光起始劑的極性基團相互作用,且在移除紫外光後再重新結合,照射紫外光的區域調控範圍較大,同時可利用電場和光場調控聚合物穩固型藍相液晶的光子能隙。利用對這些聚合條件的研究結果,成功利用相同材料的藍相液晶,可選擇光子能隙調控上位移或拓寬。光子能隙可位移達到約200nm,並且光子能隙可拓寬至整個可見光範圍。此外我們開發利用光場調控聚合物穩固型藍相液晶的光子能隙,並改變不同的光場圖樣,達到區域化調控的效果。由於光子晶體的特性可以應用於雷射、波導以及光纖等光電元件中,光子晶體的調控性更顯為重要,利用光罩改變不同光場圖樣,可輕易改變調控的區域,在未來的發展具有極大的潛力。
Abstract
Blue phase liquid crystals are a self-aggregation three-dimensional photonic crystal. Blue phase liquid crystals exist in an extremely narrow temperature range which limits its use in applications. Although some researches has shown that with the help of monomers forming polymer stabilized blue phase liquid crystals(PSBP) could expand the existing temperature range, it sacrifices the photonic band gap tunable characteristic. In our previous researches, we’ve developed a method to control the photonic band gap of PSBP by ester functional groups which trap positive ions. After applying a DC voltage, the trapped ions would be attracted to negative electrodes causing polymers stretched leading to a change in blue phase liquid crystals’ lattice constant. This not only expands the existing temperature range but also provides an electrical field tuning property.
This dissertation investigated different parameters of polymerization that effects on the photonic band gap tunable characteristic of polymer stabilized blue phase liquid crystals. At different cell gaps and different concentration of photoiniators, polymers distribute differently. Therefore, after an applied voltage, polymers stretch differently causing differences in photonic band gap tunings. These differences could be classified into photonic band gap shifting and photonic band gap broadening. By doping photoniniators which ionizes after irradiating light and recombines after removing the light, could expand the tuning ranges. With could use both electrical and optical fields to tune the photonic band gap of PSBP. With these polymerizing condition results, we successfully demonstrated a selective photonic band gap shifted or broadened PSBP by the same materials of blue phase liquid crystals. The photonic band gap could be shifted 200nm and the bandwidth covers all the visible light range. We also developed a localized tunable effect by different shapes of optical fields. Since photonic crystals’ characteristics could be applied in devices such as lasers, waveguides, and fibers, the tunable properties appear to be more important. By different shapes of masks, we could easily change the tuning areas. This research is believed to have great potential in future developments.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iv
圖錄 vi
表錄 xi
第一章 緒論 1
第二章 液晶簡介 3
2-1液晶的起源 3
2-2液晶的分類 3
2-3液晶的物理性質 8
第三章 藍相液晶簡介 17
3-1藍相的發現 17
3-2藍相的結構 18
3-3聚合物穩固型藍相(Polymer-Stabilized Blue Phase) 21
3-4藍相液晶的判別方法 22
3-5藍相液晶的光學特性和電光效應 25
第四章 理論介紹 29
4-1光子晶體 29
4-2液態光子晶體 31
4-3電場調控液態光子晶體之光子能隙 36
4-4電場和光場調控液態光子晶體之光子能隙 39

第五章 實驗方法及過程 41
5-1藍相液晶材料介紹 41
5-2藍相液晶的材料準備 44
5-3實驗觀察與量測 49
第六章 實驗結果與討論 53
6-1高分子單體照光引致相分離 53
6-2不同濃度的光起始劑對於電場調控光子能隙的影響 54
6-3不同液晶盒厚度對於電場調控光子能隙的影響 57
6-4水平配向對於電場調控光子能隙的影響 60
6-5聚合物受直流電場影響之理想模型 64
6-6光場和電場調控聚合物穩固型藍相液晶之光子能隙 67
第七章 結論與未來展望 78

參考資料 79
參考文獻 References
1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059-2061 (1987).
2. Michael Chen, Yi-Hsin Lin, Hung-Shan Chen, and Hung-Yuan Chen, "Electrically assisting crystal growth of blue phase liquid crystals,” Opt. Mat. Express 4, 953-959(2014).
3. T.H. Lin, H.C. Jau, C.H. Chen, Y.J. Chen, T.H. Wei, C.W. Chen, and Andy Y.G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 61122 (2006).
4. T. H. Lin, Y. J. Chen, C. H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “
Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
5. Y. Huang, Y. Zhou, and S.T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Express 15, 6414 (2007).
6. C.Y. Huang, J.J. Stott, and R.G. Petschek, “Routes to Self-Assembling Stable Photonic Band-Gap Phases in Emulsions of Chiral Nematics With Isotropic Fluids,” Phys. Rev. Lett. 80, 5603 (1998).
7. Hu-Yi Liu, Chun-Ta Wang, Chiao-Yun Hsu and Tsung-Hsien Lin, “Pinning effect on the photonic bandgaps of blue-phase liquid crystal,” Appl. Opt.50, 1606 (2011).
8. Y.H. Huang, Y. Zhou, C. Doyle, and S.T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14,1236-1242 (2006).
9. H.K. Bisoyi, Q. Li, “Light-Directing Chiral Liquid Crystal Nanostructures: From 1D to 3D,” Acc. Chem. Res. 47,3184-3195 (2014).
10. V.T. Tondiglia, L.V. Natarajan, C.A. Bailey, M.M. Duning, R.L. Sutherland, D.K. Yang, A. Voevodin, T. J.White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110, 053109 (2011).
11. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64-68 (2002).
12. C.W. Chen, C.C. Li, H.C. Jau, L.C. Yu, C.L. Hong, D.Y. Guo, C.T. Wang, and T.H. Lin, “Electric Field-Driven Shifting and Expansion of Photonic Band Gaps in 3D Liquid Photonic Crystals,” ACS Photonics 2, 1524−1531(2015).
13. V.P. Tondiglia, L.V. Natarajan, C.A. Bailey, M.E.McConney,K.M. Lee, T.J. Bunning, R. Zola, H. Nemati,D.K. Yang, and T.J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mat. Express 4,1465-1472 (2014).
14. K.M. Lee, V.P. Tondiglia,T. Lee, I.I. Smalyukh, and T.J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C 3, 8788-8793(2015).
15. K.M. Lee, V.P. Tondiglia, M.E. McConney, L.V. Natarajan, T.J. Bunning, and T.J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth
Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS. Photonic
1,1033-1041 (2014).
16. K.M. Lee, V.P. Tondiglia, and T.J. White, “Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals,” Soft Matter 12, 1256-261(2016).
17. F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatshefte für Chemie(Wien) 9, 421-441 (1888).
18. S. Singh, and D. A. Dunmur, Liquid Crystal:Fundamentals, World Scientific, Singapore (1990).
19. L. M. Blinov, and V. Chigrinov, Electrooptic effects in liquid crystal materials (Springer Science & Business Media, 2012).
20. D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of
Liquid Crystals, Low Molecular Weight Liquid Crystals I: Calamitic Liquid Crystals (John Wiley & Sons, 2011).
21. 陳怡君, “對膽固醇液晶雷射輸出大範圍調控之研究,” 國立成功大學, 物理研究所 (2005).
22. A. Yariv, and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. letters 1, 16-18 (1977).
23. A. Yariv, Optical electronics in modern communications (Oxford university press, 1997).
24. I.C. Khoo, “Liquid Crystal: physical properties and nonlinear optical phenomena,” John Wiley & Sons,Inc (1995).
25. P. J. Collings, and M. Hird, Introduction to liquid crystals: chemistry and physics (CRC Press, 1997).
26. D. Coates, and G. W. Gray, “Optical studies of the amorphous liquid-cholestreic liquid crystal transition : The “blue phase’’,” Phys. Lett. 45, 115-116 (1973).
27. S. Meiboom, and M. Sammon, “Structure of the blue phase of a cholesteric liquid crystal,” Phys. Rev. Lett. 44, 882 (1980).
28. G. W. Gray, and P. A. Winsor, Liquid crystals & plastic crystals. Editors (1974).
29. M.C. Bohly, “Polarization Optical of Periodic Media,” Neuchatel (2004).
30. D. M. Moore, and R. C. Reynolds, X-ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford university press Oxford, 1989).
31. Y. Kawata, H. Yoshida, S. Tanaka, A.Konkanok, and M. Ozaki “Anisotropy of the electro-optic Kerr effect in polymer-stabilized blue phases,” Phys. Rev. E 91, 022503 (2015).
32. C.W. Chen, H.C. Jau, C.H. Lee, C.C. Lee, C.T. Hou, C.W. Wu, T.H. Lin, and I.C. Khoo, “Temperature dependence of refractive index in blue phase liquid crystals,” Opt. Mat. Express 3, 527-532 (2013).
33. P.P. Crooker, in Chirality in Liquid Crystals (Eds: H.S. Kitzerow, C. Bahr). Springer, New York, 186-222 (2001).
34. P. Pierański, P. Cladis, T. Garel, and R. Barbet-Massin, “Orientation of crystals of blue phases by electric fields,” J. de Phy. 47, 139-143 (1986).
35. F. Brisse, “Cristallographie by D. Schwarzenbach,” Acta Crystallographica Section A: Foundations of Crystallography 50, 652-652 (1994).
36. I. Dierking, Textures of liquid crystals (John Wiley & Sons, 2006).
37. H.J. Ullrich, M. Schlaubitz, F. Friedel, T. Spann, J. Bauch, T. Wroblewski, S. Garbe, G. Gaul, A. Knöchel, and F. Lechtenberg, “Excitation of Kossel patterns by synchrotron radiation,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 349, 269-273 (1994).
38. H. Yoshida, S. Yabu, H. Tone, Y. Kawata, H. Kikuchi, and M. Ozaki, “Secondary electro-optic effect in liquid crystalline cholesteric blue phases,” Opt. Mat. Express 4, 960-968 (2014).
39. F. Castles, S.M. Morris, J.M.C. HUNG, M.M. Qasim, A.D. Wright, S. Nosheen, S.S. Choi, B.I. Outram, S.J. Elston, C. Burgess, L. Hill, T.D. Wilkinson, and H.J. Coles, “Stretchable liquid-crystal blue-phase gels,” Nat. Mater. 13, 817–821(2014).
40. J. Yan, and S.T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial [Invited],” Opt. Mat. Express 1, 1527-1535 (2011).
41. J. Yan, H.C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
42. Y. Huang, Y. Zhou, C. Doyle, and S.T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236-1242(2006).
43. 劉鵠儀, “摻雜偶氮材料於藍相液晶之光學調控研究", 國立中山大學, 光電工程研究所 (2010).
44. H.S. Kitzerow, “Blue phase come of age : a review", Proc. SPIE. 7232 05 (2009).
45. D. J. Mulder, A. P. H. J. Schenning, and C. W. M. Bastiaansen, “Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors,” J. Mater. Chem. C 2, 6695-6705 (2014).
46. R. A. M. Hikmet ,and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26, 1645-1653 (1999).
47. F. Simoni, G. Cipparrone and R. Bartolino, “Tuning of a Dye Laser By a Liquid Crystal ,” Liq. Cryst. 139, 161-169(1986).
48. H. Xianyu, S. Faris, and G. P. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43, 5006–5015(2004).
49. M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75, 3264–3266(1999).
50. P. Kirsch, and K. Tarumi, “A Novel Type of Liquid Crystal Based on Axially Fluorinated Cyclohexane Units,” Angew. Chem. Int. Ed. 37, 484–489(1998).
51. P. Kirsch, et al. , Eur. J. Org. Chem., 3479–3487(2008).
52. A. Mochizuki, T. Yoshihara, K. Motoyoshi, and S. Kobayashi, “ An electric bilayer model of the transient current in a nematic liquid crystal cell,” Jpn. J. Appl. Phys. 29, 322-325(1990).
53. H. Mada, and K. Osajima, “Time response of a nematic liquid‐crystal cell in a switched dc electric field,” J. Appl. Phys. 60, 3111-3113 (1986).
54. S. Singh, and D. A. Dunmur, Liquid Crystal:Fundamentals, World Scientific, Singapore (1990).
55. H. J. Coles, and H. F. Gleeson, “Electric Field Induced Phase Transitions and Colour Switching in the Blue Phases of Chiral Nematic Liquid Crystals,” Mol. Crysr. Liy. Cryst. 167, 213-225(1989).
56. Yuan Chen and Shin-Tson Wu, “Electric field-induced monodomain blue phase liquid crystals,” Applied Physics Letters 102, 171110(2013).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code