Responsive image
博碩士論文 etd-0807116-081029 詳細資訊
Title page for etd-0807116-081029
論文名稱
Title
薄鍍鋅鋼板之摩擦攪拌搭接研究
Studies on the Friction Stir Lap Welding of Thin Galvanized Steel Sheets
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-25
繳交日期
Date of Submission
2016-09-08
關鍵字
Keywords
摩擦攪拌銲接、鍍鋅鋼板、搭接、破壞負荷
friction stir welding, fracture load, galvanized steel, lap welding
統計
Statistics
本論文已被瀏覽 5655 次,被下載 1
The thesis/dissertation has been browsed 5655 times, has been downloaded 1 times.
中文摘要
本研究係使用直徑6 mm之碳化鎢圓棒作為銲接工具,在高轉速定負荷條件下對薄鍍鋅鋼板進行摩擦攪拌搭接,搭接後進行剪切拉伸試驗以測量破壞負荷,瞭解接合過程之銲接機制。在擠壓負荷(150~500 N)、主軸轉速(3000~24000 rpm)、銲接時間(5~30 sec)及進給速度(0.5~2 mm/sec)等實驗參數下,從銲道表面輪廓、溫度變化、破壞負荷與下陷深度等結果,探討薄鍍鋅鋼板之接合特性。以主軸轉速18000 rpm、擠壓負荷300 N及銲接時間20 sec之條件下進行摩擦攪搭接,結果顯示鍍鋅鋼板拉剪強度較高,約為冷軋鋼板的1.8倍。根據點銲搭接實驗之結果,發現擠壓負荷(Fd)、主軸轉速(Ns)與進給速度(f)均會影響搭接後的破壞負荷(F_f),將其量化後求出經驗公式為F_f=0.0302∙〖F_d〗_^0.8289∙〖N_s〗_^0.6312∙f^(-0.43) ,結果顯示破壞負荷與擠壓負荷及主軸轉速乘積成正相關,而與進給速度成負相關,其中擠壓負荷對銲道之破壞負荷比主軸轉速影響的程度較大。
Abstract
In this study, a pinless tool made of tungsten carbide rod with 6 mm in diameter is used as the welding tool at high rotating speed and constant downward load conditions to conduct the friction stir lap welding (FSLW) for thin galvanized steel sheets. To understand the lap mechanism, a shear tensile test is conducted to measure the fracture load after welding. The lap mechanism and characteristics of thin galvanized steel sheets, in terms of weld surface profile, interface temperature, failure load, and plunge depth, were investigated under different operation conditions, such as the downward load (150~500 N), the rotating speed (3000~24000 rpm), the dwell time (5~30 sec) and the feeding rate (0.5~2 mm/sec). Under a rotating speed 18000 rpm, a downward load of 300 N and a dwell time of 20 sec, the shear strength for the galvanized steel is about 1.8 times as strong as the cold rolling steel. Experimental results show that the failure load is significantly influenced by the downward load, the rotating speed, and the feeding rate. An empirical equation of failure load (F_f) suitable for the thin galvanized steel sheets of the FSLW process is derived in terms of load (〖F_d〗^ ), rotating speed (〖N_s〗^ ), feeding speed (f^ ) as F_f=0.0302∙〖F_d〗_^0.8289∙〖N_s〗_^0.6312∙f^(-0.43). This formula indicates that F_f is proportional to the product of〖 F〗_d and N_s, but inversely proportional to 〖 f〗^ . Moreover, the influence of downward load on the failure load is greater than that of rotating speed.
目次 Table of Contents
審訂書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 碳鋼材料 2
1.2.2 鍍鋅鋼 7
1.3 研究目的 10
第二章 實驗設備與實驗方法 11
2.1 摩擦攪拌銲接設備 11
2.1.1 高速主軸模組 12
2.1.2 進給模組 13
2.1.3 氣壓模組 13
2.2 交界溫度量測 15
2.3 平均熱暈寬度量測 15
2.4 表面粗糙度與銲道下陷深度量測 16
2.5 拉剪破壞試驗 17
2.6 實驗試片 18
2.6.1 實驗試片材料特性 18
2.6.2 實驗試片幾何形狀 19
2.7 銲接工具 19
2.7.1 銲接工具材料特性 19
2.7.2 銲接工具幾何形狀 20
2.8 實驗治具設計與材料 20
2.9 實驗方法 22
2.9.1 實驗前處理 22
2.9.2 實驗參數規劃 22
2.9.3 銲接位置 23
2.9.4 實驗步驟 23
2.10 實驗流程 25
第三章 結果與討論 26
3.1 點銲搭接實驗 26
3.1.1 時間影響 27
3.1.2 擠壓負荷影響 31
3.1.3 主軸轉速影響 36
3.1.4 主軸轉速與擠壓負荷對試片表面溫度之影響 41
3.2 進給銲接實驗 42
3.2.1 擠壓負荷與進給速度之影響 43
3.2.2 主軸轉速與進給速度之影響 47
3.2.3 主軸轉速、擠壓負荷與進給速度對銲道破壞負荷之影響 51
3.3 破斷面觀察及分析 53
3.3.1 SGCC破斷面Mapping觀察 53
3.3.2 SPCC與SGCC破斷面分析 56
3.4 SGCC接合剖面之元素分析 58
第四章 結論與未來展望 61
4.1 結論 61
4.2 未來展望 61
參考文獻 62
參考文獻 References
[1] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-smith, and C. J. Drawes, “Friction stir butt welding”, G B Patent Application No. 9125978.8, Dec. 1991; S.S. Patent No. 5460317, 1995.
[2] T. Sakthivel and J. Mukhopadhyay, “Microstructure and mechanical properties of friction stir welded copper”, Journal of Materials Science & Technology Vol.42 (2007) p.8126–8129.
[3] O. T. Midling, E. J. Morley and A. Sandvik, “Friction stir welding”, World Intellectual Property Organization Patent Application No. 95907888.2, 1995.R.
[4] R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing”, Materials Science and Engineering Vol. 50 (2005) 1-78.
[5] S. W. Williams, “Welding of airframes using friction stir”, Air and Space Europe Vol. 3 (2001) 64–66.
[6] W. M. Thomas, E. D. Nicholas, “Friction stir welding for the transportation industries”, Materials and Design Vol. 18 (1997) 269–273.
[7] W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, “Feasibility of friction stir welding steel”, Science and Technology of Welding and joining Vol. 4 (1999) 365-372.
[8] R. Ueji, H. Fujii, L. Cui, A. Nishioka, K Kunishige , K. Nogi, “Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process”, Materials Science and Engineering A Vol.423 (2006) 324–330
[9] H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, “Friction stir welding of carbon steels”, Materials Science and Engineering A Vol.429 (2006) 50-57.
[10] L. Cui, H. Fujii, N. Tsuji and K. Nogi, “Friction stir welding of a high carbon steel”, Scripta Materialia Vol. 56 (2007) 637-640.
[11] K. Aota and K. Ikeuchi, “Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plates”, Welding International Vol. 23 (2009) 572-580.
[12] D. H. Choi, C. Y. Lee, B. W. Ahn, J. H. Choi, Y. M. Yeon, K. Song, H. S. Park, Y. J. Kim,C. D. Yoo, S. B. Jung, “Frictional wear evaluation of WC-Co alloy tool in friction stir spot welding of low carbon steel plates”, Journal of Refractory Metals & Hard Materials Vol.27 (2009) 931-936.
[13] A. K. Lakshminarayanan, V. Balasubramanian M. Salahuddin, ”Microstructure, tensile and impact toughness properties of friction stir welded mild steel”, Journal of Iron and Steel Research Vol. 17 (2010) 68-74.
[14] D. A. Wang, C. W. Chao, P. C. Lin, J. Y. Uan, “Mechanical characterization of friction stir spot microwelds”, Journal of Materials Processing Technology Vol. 210 (2010) 1942–1948.
[15] Y.C. Chen, T. Komazaki, Y.G. Kim, T. Tsumura, K. Nakata, “Interface micro-structure study of friction stir lap joint of AC4C cast aluminum alloy and zinc-coated steel”, Materials Chemistry and Physics Vol.111 (2008) 375–380.
[16] S. Fukada, R. Ohashi, M Fujimoto ,H Okada, “Refill friction stir spot welding of dissimilar materials consisting of A6061 and hot dip zinc-coated steel sheets”, Proceedings of the 1st International Joint Symposium on Joining and Welding (2013) 183-187.
[17] M. Haghshenas, A. Abdel-Gwad, A.M. Omran, B. Gökçe, S. Sahraeinejad, A.P. Gerlich, “Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels”, Materials and Design Vol.55 (2014) 442–449
[18] R.Z. Xu, D.R. Ni, Q. Yang, C.Z. Liu, Z.Y. Ma, “Pinless Friction Stir Spot Welding of Mg‒3Al‒1Zn Alloy with Zn Interlayer”, Journal of Materials Science & Technology Vol.32 (2016) 76–78
[19] 劉昱佑, “使用無探針工具對薄鋼板之摩擦攪拌搭接研究”, 國立中山大學機械與機電工程學系研究所碩士論文 (2015)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.53.68
論文開放下載的時間是 校外不公開

Your IP address is 3.142.53.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code