Responsive image
博碩士論文 etd-0807116-111540 詳細資訊
Title page for etd-0807116-111540
論文名稱
Title
聚合物穩固藍相液晶製作高效率反射式顯示器之研究
The study of the high-efficiency reflective display based on polymer-stabilized blue phase liquid crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-09-08
關鍵字
Keywords
藍相液晶、反射式顯示器、單體、聚合物穩固藍相液晶、液晶
blue phase, liquid crystals, reflective display, monomer, polymer-stabilized blue phase liquid crystals
統計
Statistics
本論文已被瀏覽 5681 次,被下載 36
The thesis/dissertation has been browsed 5681 times, has been downloaded 36 times.
中文摘要
本論文利用一種簡單的方法製作高反射率的聚合物穩固藍相液晶樣品。將聚合物單體摻進藍相液晶,再經由UV光曝光後形成聚合物穩固藍相液晶,能使得藍相液晶的結構會更穩定,具有更寬的溫度範圍。接著再利用樣品配向的方式使藍相液晶的晶格整齊排列,產生高效率的布拉格反射,並透過施加電壓的方式來調控。實驗中分別製作了能夠反射紅色、綠色與藍色的聚合物穩固藍相液晶樣品,作為顯示器的三個子像素。實驗結果顯示三個子像素(紅、綠與藍色)的樣品反射率分別為50、77與60 %,且綠色與藍色子像素的樣品在施加電壓下具有良好的光電特性。此外,在未來的研究中預期能改善操作電壓過高的問題。
Abstract
A simple method of fabricating high-reflective display with the polymer-stabilized blue phase liquid crystals (PS-BPLCs) is proposed. The PS-BPLCs are formed from the polymer monomer-doped BPLCs curing by the UV light, resulting in the more stable structure and the wider temperature range of the BPLCs. The uniform reflective color and high Bragg's reflection of the BPLCs can be obtained by rubbing the surface of sample. In this work, three PS-BPLC samples are produced as the basic sub-pixels of the display, which can reflect the red(R), green(G), and blue(B) lights, respectively. The results show that the G- and B-sub-pixel of the PS-BPLC samples have a good behavior of photoelectric when applied voltage. The reflectances of three PS-BPLC samples (R, G, and B) are about 50, 77, and 60 %, respectively. Moreover, the major problem of PS-BPLCs with high operating voltage is expected to improve in the further study.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖次 vi
表次 ix
第一章 液晶簡介 1
1-1 前言 1
1-2 液晶簡介 1
1-2.1 液晶的起源 1
1-2.2 何謂液晶 2
1-3 液晶分類 3
1-3.1 依排列方式分類 3
1-3.2 依生成方法不同 9
1-3.3 依液晶分子量方式分類 9
1-4 液晶物裡 9
1-4.1 液晶的折射率異向性 9
1-4.2 介電異向性 12
1-4.3 彈性連續體理論 13
1-4.4 秩序參數 14
第二章 基礎理論 15
2-1 藍相液晶基礎理論 15
2-1.1 藍相液晶的旋光性 15
2-1.2 藍相液晶的雙扭轉柱體結構與堆疊 16
2-1.3 藍相液晶的晶格缺陷 17
2-1.4 藍相液晶的布拉格反射與光學均向性 18
2-1.5 藍相液晶的自由能理論 19
2-1.6 藍相液晶在電場中的相變 19
2-1.7 藍相液晶的溫寬拓寬技術 21
2-1.8 藍相液晶的克爾理論 24
2-2 顯示器相關簡介 25
2-2.1 穿透式顯示器 25
2-2.2 反射式顯示器 26
第三章 樣品製作與實驗架設 27
3-1 樣品製作 27
3-1.1 材料介紹 27
3-1.2 聚合物穩固藍相液晶配置 29
3-1.3 樣品盒製作 30
3-2 樣品檢測 32
3-2.1 藍相液晶溫寬量測 32
3-2.2 液晶盒厚度量測 33
第四章 實驗結果與討論 34
4-1 藍相溫度範圍量測 34
4-2 藍相液晶光學量測 35
4-2.1 聚合物穩固藍相液晶之反射式偏光顯微鏡量測與反射率量測 35
4-2.2 藍相液晶光電量測 38
第五章 總結與未來展望 44
5-1 總結 44
5-2 未來展望 45
參考文獻 46
參考文獻 References
[1] H. J. Coles and M. N. Pivnenko, ”Liquid crystal 'blue phases' with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[2] Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, ”Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[3] M. G. Han, C. G. Shin, S.-J. Jeon, H. Shim, C.-J. Heo, H. Jin, J. W. Kim, and S. Lee, ”Full Color Tunable Photonic Crystal from Crystalline Colloidal Arrays with an Engineered Photonic Stop-Band,” Adv. Mater. 24(48), 6438–6444 (2012).
[4] S.-Y. Lu and L.-C. Chien, ”A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[5] L. Rao and S.-T. Wu, ”Low-voltage blue phase liquid crystal displays,” Liq. Cryst. Today 24(1), 3–12 (2014).
[6] L. Rao, J. Yan, S.-T. Wu, S.-i. Yamamoto, and Y. Haseba, ”A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[7] X. W. Xu, X. W. Zhang, D. Luo, and H. T. Dai, ”Low voltage polymer-stabilized blue phase liquid crystal reflective display by doping ferroelectric nanoparticles,” Opt. Express 23(25), 32267–32273 (2015).
[8] J. Yan, S.-T. Wu, K.-L. Cheng, and J.-W. Shiu, ”A full-color reflective display using polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(8), 081102 (2013).
[9] P. G. d. Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1995).
[10] 松本正一,角田市良, 液晶之基礎與應用 (國立編譯館).
[11] L.-C. Chien, H.-S. Kitzerow, and M. H. Wu, ”Blue phases come of age: a review,” Proc. SPIE 7232, 723205 (2009).
[12] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, ”Polymer-stabilized liquid crystal blue phases,” Nat Mater 1(1), 64–68 (2002).
[13] T.-H. Lin, C.-W. Chen, and Q. Li, “Self-organized 3D Photonic Superstructure: Blue Phase Liquid Crystal,” in Anisotropic Nanomaterials: Preparation, Properties, and Applications, Q. Li, ed. (Springer, Heidelberg, 2015).
[14] H. Kikuchi, ”Liquid Crystalline Blue Phases,” Struct. Bonding 128, 99–117 (2008).
[15] Y. Chen and S.-T. Wu, ”Electric field-induced monodomain blue phase liquid crystals,” Appl. Phys. Lett. 102(17), 171110 (2013).
[16] H. C. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Y. Liu, T. H. Huang, C. Y. Tsai, C. H. Lin, and S. T. Wu, ”Blue-Phase Liquid Crystal Displays With Vertical Field Switching,” J. Disp. Technol 8(2), 98–103 (2012).
[17] H. Choi, H. Higuchi, Y. Ogawa, and H. Kikuchi, ”Polymer-stabilized supercooled blue phase,” Appl. Phys. Lett. 101(13), 131904 (2012).
[18] Y. Kawata, H. Yoshida, S. Tanaka, A. Konkanok, M. Ozaki, and H. Kikuchi, ”Anisotropy of the electro-optic Kerr effect in polymer-stabilized blue phases,” Phys Rev E Stat Nonlin Soft Matter Phys 91(2), 022503 (2015).
[19] M. Kimura, N. Nagumo, T. N. Oo, N. Endo, H. Kikuchi, and T. Akahane, ”Single-substrate polymer-stabilized blue phase liquid crystal display,” Opt. Mater. Express 3(12), 2086–2095 (2013).
[20] Y.-F. Lan, C.-Y. Tsai, J.-K. Lu, and N. Sugiura, ”Mechanism of hysteresis in polymer-network stabilized blue phase liquid crystal,” Polymer 54(7), 1876–1879 (2013).
[21] Y. Liu, Y.-f. Lan, H. Zhang, R. Zhu, D. Xu, C.-Y. Tsai, J.-K. Lu, N. Sugiura, Y.-C. Lin, and S.-T. Wu, ”Optical rotatory power of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 102(13), 131102 (2013).
[22] J. Sun and S.-T. Wu, ”Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 183–192 (2014).
[23] J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, ”Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[24] J. Yan and S.-T. Wu, ”Effect of Polymer Concentration and Composition on Blue Phase Liquid Crystals,” J. Disp. Technol 7(9), 490–493 (2011).
[25] F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, ”Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat Mater 11(7), 599–603 (2012).
[26] F. Castles, S. M. Morris, J. M. Hung, M. M. Qasim, A. D. Wright, S. Nosheen, S. S. Choi, B. I. Outram, S. J. Elston, C. Burgess, L. Hill, T. D. Wilkinson, and H. J. Coles, ”Stretchable liquid-crystal blue-phase gels,” Nat Mater 13(8), 817–821 (2014).
[27] A. Yoshizawa, M. Sato, and J. Rokunohe, ”A blue phase observed for a novel chiral compound possessing molecular biaxiality,” J. Mater. Chem. 15(32), 3285–3290 (2005).
[28] T. Z. Shen, S. H. Hong, and J. K. Song, ”Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient,” Nat Mater 13(4), 394–399 (2014).
[29] H.-C. Cheng, J. Yan, T. Ishinabe, and S.-T. Wu, ”Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[30] K. Kim, S. Kim, S.-Y. Jo, and S.-W. Choi, ”A monodomain-like liquid-crystalline simple cubic blue phase II,” J. Inf. DISP. 16(3), 155–160 (2015).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code