Responsive image
博碩士論文 etd-0807116-131500 詳細資訊
Title page for etd-0807116-131500
論文名稱
Title
針對LTE網路之小型基地台佈署策略以提升網路效能與能源利用
Efficient Small Cell Deployment Strategy to Improve Network Performance and Energy Utilization in LTE Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-18
繳交日期
Date of Submission
2016-09-12
關鍵字
Keywords
基地台佈署、能源節省、長期演進通訊技術、LTE、蜂巢式網路規劃、異質網路
Long Term Evolution, Energy Saving, Cellular Network Planning, LTE, Heterogeneous Networks, Cell Deployment
統計
Statistics
本論文已被瀏覽 5645 次,被下載 26
The thesis/dissertation has been browsed 5645 times, has been downloaded 26 times.
中文摘要
手機通訊網路的領域日益重要,在2G、3G時,都是佈署同類型的大型基地台,而4G推出之後,引進了異質網路的概念,利用佈署不同類型的基地台而達到許多好處及效益,如:消除基地台覆蓋孔洞、節省成本、節省能源、提升網路效能等等,如何佈署基地台是個值得研究的主題,好的基地台佈署策略能減省成本與能源耗損,進而增加系統效能,根據facility location problem可證明基地台佈署問題為一NP-hard的問題。另外,隨著網路使用人口增加,在資源有限的狀況下,節省能源與提高效能變成一個很重要的議題。
從同質性網路轉換成異質性網路的過程中,當營運商要佈署基地台時,多數的狀況是在一個已具有大型基地台的環境中,動態加入各種小型基地台,進而增進效能,而許多文獻雖有提出佈署基地台之方法,但它們多半考量在沒有現存網路設備的環境中架設基地台,基於上述動機,本篇論文針對固定的基地台佈署成本,並根據營運商收集的UE分佈圖、基地台參數等,提出一個結合K-Means與MDBSCA在異質網路中有效的小型基地台佈署策略,並適度的調整各個基地台的發射功率與覆蓋範圍,以達到滿足使用者需求、節省能源與提升能源利用率的目的。根據模擬結果顯示,本論文所提出的演算法能有效的使整體網路效能提升,在使用者滿足率的部分,最多可多滿足36%的UE,在功率消耗部分,最多可比其他演算法節省34%的功率,在能源利用率的部分,最多增加75%的利用率。
Abstract
Mobile communication is important and the trend of future. Homogeneous networks are used by 2G and 3G. Heterogeneous networks are introduced to cellular systems to enhance coverage, save energy, reduce budget and improve capacity. Deploy different kind of Base Station is profitable. The problem of base station deployment has proven to be NP-hard. An excellent planning can improve network performance effectively. In addition, energy saving is an important issue along with the increase of network traffic as well as limited resources.
Many researches deploys the Macro-cell and small-cell in the environment simultaneously. However, in most cases, when the provider deploys the small-cell for network enhancement, they add the small-cell into an environment which has had several Macro-cell. As mentioned above, because of those reason, we focus on adding the small-cell flexibly with budgeted cell planning. We take into account the UE location and different base station and proposed the algorithm which combine K-Means and MDBSCA to achieve the objective of high-satisfied rate. Moreover, we adjust the power emission to attain the target of low power consumption and high-energy efficiency.
The performance improvement of the proposed algorithm has been validated by simulation result. Compare with K-means and DBSCAN, the proposed method can decrease the power consumption by 34% at most. In regards to UE satisfied ratio, the improved rate is 36% at most. The utilized rate rise to 75% at best in terms of energy efficiency.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vi
表次 vii
第一章 導論 1
1.1 前言 1
1.2 研究動機及貢獻 4
1.3 章節架構 5
第二章 相關文獻探討 6
第三章 LTE網路架構與問題定義 9
3.1 LTE網路架構與無線傳輸模型 9
3.2 問題定義 15
第四章 基地台佈署策略 18
4.1 第一階段:放置MICRO基地台 18
4.2 第二階段:調整MICRO基地台 20
4.3 第三階段:放置PICO基地台 25
4.4 第四階段:調整PICO和MACRO基地台 27
第五章 實驗結果 30
5.1 模擬參數 30
5.2 使用者滿足率分析 37
5.3 消耗功率分析 45
5.4 能源使用效率分析 48
第六章 結論與未來研究方向 51
參考文獻 52
參考文獻 References
[1] C. Cox, An Introduction to LTE: LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile Communications, Wiley, 2014.
[2] A. Khandekar, N. Bhushan, J. Tingfang, and V. Vanghi, “LTE-Advanced: Heterogeneous networks”, European Wireless Conference, pp. 978-982, 2010.
[3] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, “A survey on 3GPP heterogeneous network”, IEEE Wireless Communications, vol. 18, no. 3, June 2011.
[4] Y. C. Wang and C. A. Chuang, “Efficient eNB deployment strategy for heterogeneous cells in 4G LTE systems”, Computer Networks, vol. 79, no. 14, pp.297-312, 2015.
[5] M. Dottling, W. Mohr, and A. Osseiran, Radio Technologies And Concepts For IMT-advanced, Wiley, 2009.
[6] S. Kanchi, S. Sandilya, D. Bhosale, A. Pitkar, and M. Gondhalekar, “Overview of LTE-A technology”, IEEE Global High Tech Congress on Electronics, pp.195-200, 2013.
[7] Z. Drezner and H. W. Hamacher, Facility Location: Applications and Theory, Springer-Verlah, 2002.
[8] P. Calegari, F. Guidec, P. Kuonen, and D. Wagner, “Genetic approach to radio network optimization for mobile systems”, IEEE Vehicular Technology Conference, pp. 755-759, 1997.
[9] P. Calegari, F. Guidec, P. Kuonen, and D. Kobler, “Parallel island-based genetic algorithm for radio network design,” Journal of Parallel and Distributed Computing, vol. 47, no. 1, pp. 86-90, November 1997.
[10] K. Tutschku, “Demand-based radio network planning of cellular mobile communication systems”, IEEE INFOCOM, pp. 1054-1061, 1998.
[11] C. Lee and H. Kang, “Cell planning with capacity expansion in mobile communications: a tabu search approach”, IEEE Transactions on Vehicular Technology, vol. 49, no. 5, pp. 1678-1691, September 2000.
[12] S. Hurley, “Planning effective cellular mobile radio networks”, IEEE Transactions on Vehicular Technology, vol. 51, no. 2, pp. 243-253, March 2002.
[13] Z. Altman, J. M. Picard, S. Ben Jamaa, B. Fourestie, A. Caminada, T. Dony, J. F. Morlier, and S. Mourniac, “New challenges in automatic cell planning of UMTS networks”, IEEE Vehicular Technology Conference, pp. 951-954, 2002.
[14] H. P. Lin, R. T. Juang, D. B. Lin, C. Y. Ke, and Y. Wang, “Cell planning scheme for WCDMA systems using genetic algorithm and measured background noise floor”, IEE Proceedings Communications, vol. 151, no. 6, pp. 595-600, December 2004.
[15] E. Emelianova, S. Park, and S. Bahk, “Radio planning and coverage optimization of 3G cellular networks”, Wireless Networks, vol. 14, no. 4, pp. 435-447, August 2008.
[16] C. Y. Lee and H. M. Shin, “Cell planning in WCDMA networks for service specific coverage and load balancing”, Wireless Personal Communications, pp. 1-19, September 2011.
[17] T. S. Siadari and S. Y. Shin, “Geo-clustering algorithm for downlink cellular network planning”, IEEE International Conference on ICT Convergence, pp. 119-124, 2012.
[18] Y. Wu, D. Zhang, H. Jiang, and Y. Wu, “A novel spectrum arrangement scheme for femto cell deployment in LTE macro cells”, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 6-11, 2009.
[19] P. Lin, J. Zhang, Y. Chen, and Q. Zhang, “Macro-femto heterogeneous network deployment and management: from business models to technical solutions”, IEEE Wireless Communications, vol. 18, no. 3, pp. 64-70, June 2011.
[20] E. Amaldi and A. Capone, “Deployment algorithm for femtocells in multi-tiered wireless cellular network”, International Conference on ICT Convergence, pp. 131-136, October 2012.
[21] S. F. Yunas, A. Asp, J. Niemela, and M. Valkama, “Deployment strategies and performance analysis of Macrocell and Femtocell networks in suburban environment with modern buildings”, IEEE Local Computer Networks Workshops, pp. 643-651, September 2014.
[22] S. Kaneko, T. Matsunaka, and Y. Kishi, “A cell-Planning model for HetNet with CRE and TDM-ICIC in LTE-Advanced”, IEEE Vehicular Technology Conference, pp. 1-5, 2012.
[23] S. Wang, W. Zhao, and C. Wang, “Approximation algorithms for cellular networks planning with relay nodes”, IEEE Wireless Communications and Networking Conference, pp. 3230-3235, April 2013.
[24] S. Y. Shin and I. F. M. Zain, “Cellular network planning for heterogeneous network using Geo-Clustering algorithm”, IEEE ICT Convergence International Conference, pp. 448-449, October 2013.
[25] X. Li, X. Zhang, and W. Wang, “An energy-efficient cell planning strategy for heterogeneous network based on realistic traffic data”, IEEE International Computing, Management and Telecommunications Conference, pp. 122-127, 2014.
[26] W. Zhao and S. Wang, “Cell planning for heterogeneous cellular networks”, IEEE Wireless Communications and Networking Conference, pp. 1032-1037, 2013.
[27] W. Zhao, S. Wang, C. Wang, and X. Wu, “Cell planning for heterogeneous networks: an approximation algorithm”, IEEE INFOCOM, pp. 1087-1095, 2014.
[28] S. Wang, W. Zhao, and C. Wang, “Budgeted cell planning for cellular networks with small cells”, IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4797-4806, October 2015.
[29] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[30] F. Khan, LTE for 4G Mobile Broadband: Air Interface Technologies and Performance, Cambridge University Press, 2009.
[31] 3GPP, “Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Frequency (RF) system scenarios”, TR 36.942 v13.0.0, January, 2016.
[32] S. Ahmadi, LTE-Advanced: A Practical Systems Approach to Understanding 3GPP LTE Releases 10 and 11 Radio Access Technologies, Academic Press, 2013.
[33] C. Mehlführer, M. Wrulich, J. C. Ikuno , D. Bosanska, and M. Rupp, “Simulating the Long Term Evolution physical layer”, IEEE European Signal Processing Conference, pp. 1471-1478, 2009.
[34] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects”, TR 36.814 v9.0.0, March, 2010.
[35] S. Nawaz and K. Marwat, “LTE channel modelling for system level simulations”, Technical Report, University of Bremen, September 2011.
[36] G. Araniti, J. Cosmas, A. Iera, A. Loiacono, A. Molinaro, and A. Orsino , “Power consumption model using green policies in heterogeneous networks”, IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, pp. 1-5, 2014.
[37] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Academic Press, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code