Responsive image
博碩士論文 etd-0807116-182543 詳細資訊
Title page for etd-0807116-182543
論文名稱
Title
光配向技術製作可廣角調控的圓形光柵之研究
The study of widely tunable circular gratings with the photo-alignment method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-09-07
關鍵字
Keywords
繞射角、無偏振依賴、手紋結構、光配向、膽固醇液晶、環形光柵
fingerprint, circular gratings, diffraction angle, polarization-independent, cholesteric liquid crystals, photo-alignment
統計
Statistics
本論文已被瀏覽 5686 次,被下載 27
The thesis/dissertation has been browsed 5686 times, has been downloaded 27 times.
中文摘要
本研究利用膽固醇液晶之手紋結構,並搭配光配向技術製作可廣角調控之環形光柵。膽固醇液晶在適當的d/p值與電壓下,其排列會轉為手紋結構,且該結構具有近似於相位型光柵的週期性條紋。手紋結構根據不同的d/p值,可分為螺距無法調變的Developable-modulation (DM) type (d/p=0.5~1.5) ,以及螺距可調變的Growing-modulation (GM) type (d/p=1.5~3)。本研究藉由控制樣品的d/p值,使其呈現GM type的手紋結構特性,並利用此特性以外加電壓來改變手紋結構之螺距,達到調控繞射角的目的。在本研究中d/p值為2.5的樣品在繞射角調控與光柵成形的表現最佳,其繞射角調控範圍可達22.31度。此外由於環形光柵具有對稱性結構,因此具有無偏振依賴的特性。基於以上優點,此元件不僅對於入射光偏振態的選擇上更為彈性,也可藉由微小電壓即可達到繞射角調控的效果,在光學開關元件上是個相當好的選擇。
Abstract
This study presents a widely tunable circular gratings base on the photo-alignment method. The fingerprint texture of cholesteric liquid crystals (CLCs) can be obtained under the conditions of the appropriate voltage and d/p ratio. The fingerprint texture with d/p ratio of 0.5~1.5 is defined as the developable-modulation (DM) type, the stripes of fingerprint texture in the DM type will appear simultaneously when applied a low voltage. The fingerprint with d/p ratio of 1.5~3.0 is defined as the growing-modulation (GM) type, the stripes of fingerprint texture in the GM type will extend gradually from defects and along the alignment direction when applied a low voltage. Thus, the pitch of CLCs with GM type can be easily tuned by applying various voltages. Exploiting this characteristic, this work fabricates a tunable circular gratings with CLCs. The results show that the maximum tunable angle of 2nd order diffraction is about 21.51 with d/p ratio 2.5 of the CLC sample. Moreover, the CLC circular gratings have the polarization-independent property because of the circular symmetrical structure. The driven voltage of this gratings is also very small. According to the above advantages, the CLC circular gratings have a great potential in optical applications.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 簡介 1
1-1 前言 1
1-2 液晶簡介 3
(一)液晶的發現 3
(二)何謂液晶 4
(三)液晶的分類 4
1-3 液晶的物理特性 9
(一)秩序參數 9
(二)光學異向性 10
(三)介電異向性 11
(四)彈性連續體形變理論 12
第二章 相關理論 14
2-1 膽固醇液晶的結構變化 14
(一)平面結構 14
(二)手紋結構 14
(三)焦錐結構 14
(四)垂直結構 15
2-2 手紋結構之理論與應用 16
2-3 繞射 18
2-4 光柵 19
2-5 偶氮染料 (azo dye) 20
(一)光致異構化(Photo-isomerization) 20
(二)負力矩效應(Gibbons’ Model) 22
(三)吸附效應 23
第三章 樣品製作與儀器架設 24
3-1 實驗材料 24
(一)向列型液晶 E7 24
(二)旋性分子S811 25
(三)偶氮染料-甲基紅 26
3-2 樣品製作 27
(一)染料摻雜膽固醇液晶的調配 27
(二)玻璃基板清潔 28
(三)液晶盒的製作與封裝 28
3-3 實驗架設 29
(一)圓形光配向的實驗架設 29
(二)觀察手紋結構隨外在電壓的變化 30
(三)圓形光柵的繞射效率量測 31
(四)圓形光柵的繞射角量測 32
(五)圓形光柵的偏振依賴性量測 33
第四章 實驗結果與討論 34
4-1 偏光顯微鏡下觀察手紋結構之條紋變化 34
4-2 以電壓調控繞射角變化 37
4-3 繞射效率 41
4-4 偏振依賴性 44
第五章 研究總結與未來展望 46
5-1 研究總結 46
5-2 未來展望 47
參考文獻 48
參考文獻 References
[1] Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[2] S.-W. Ke, T.-H. Lin, and A. Y.-G. Fuh, “Tunable grating based on stressed liquid crystal,” Opt. Express 16(3), 2062–2067 (2008).
[3] G. Friedel, “THE MESOMORPHIC STATES OF MATTER,” Ann. Phys. 18, 273–474 (1922).
[4] W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[5] C. Noguez, J. Phys. Chem. C, “Surface Plasmons on Metal Nanoparticles:  The Influence of Shape and Physical Environment,” 111(10), 3806–3819 (2007).
[6] M. Nishikawa, T. Kosa, and J. L. West, “Effect of Chemical Structures of Polyimide on Unidirectional Liquid Crystal Alignment Produced by a Polarized Ultraviolet-Light Exposure,” Jpn. J. Appl. Phys., 38(3B), L334–L337 (1999).
[7] T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys., 107(22) 9319–9325 (1997).
[8] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrnov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys., 31(7), 2155–2164 (1992).
[9] O. V. Yaroshchuk, L. G. Cada, and M. Sonpatki, “Liquid-Crystal Photoalignment Using LowMolecular-Weight Photo-Cross-Linkable Composites,” Appl. Phys. Lett., 79(1), 30–32 (2001).
[10] H.-C. Jau, T.-H. Lin, R.-X. Fung, S.-Y. Huang, J.-H. Liu, and Andy Y.-G. Fuh, “Optically-tunable beam steering grating based on azobenzene doped cholesteric liquid crystal,” Opt. Express, 18(16), 17498–17503 (2010).
[11] T.-H. Lin, Y. Huang, A. Y.-G. Fuh, and S.-T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006)
[12] T.-S. Lin and Andy Y.-G. Fuh, “Polarization controllable spatial filter based on azo-dye-doped liquid-crystal film,” Opt. Lett., 30(11), 1390–1392 (2005).
[13] Rodney Cotterill “The Material World,” Cambridge (2008).
[14] D. Demus and L. Richter, “Textures of Liquid Crystals,” Verlag Chemie, New York (1978).
[15] 田民波 著, 林怡欣 校訂, “TFT液晶顯示原理與技術,” 五南圖書出版公司 (2008).
[16] 顧鴻壽, “光電亦晶平面顯示器-技術基礎及應用,” 新文京開發出版社 (2004)
[17] B. Bahadur, “Liquid Crystals Applications and Uses,” World Scientific, Singapore (1993).
[18] C. W. Oseen, “The theory of liquid crystals”, Trans. Faraday Soc. 29, 883–899 (1933).
[19] I.-A. Yao, C.-H. Liaw, S.-H. Chen, and J.-J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys. 96(3), 1760–1762 (2004).
[20] C.-T. Kuo, R.-H. Chiang and C.-H. Lin, “Electrically switchable cholesteric gratings based on slit electrodes,” Opt. Express 22(8), 9759–9763 (2014).
[21] M. Zhu, G. Carbone and C. Rosenblatt, “Electrically switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[22] C. V. Brown, Em. E. Kriezis and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[23] M. S. Giridhar, K. A. Suresh and G. S. Ranganath, “Optical diffraction in nonuniform cholesteric liquid crystals: phase-grating mode,” J. Opt. Soc. Am. A 19(1), 19–23 (2002).
[24] H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[25] S.-N. Lee, L.-C. Chien and S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[26] I.-A. Yao, Y.-C. Lai, S.-H. Chen, and J.-J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E 70(5), 051705–051709 (2004).
[27] J. E. Anderson, P. Watson, T. Ernst, and P. J. Bos, “Computer simulation evidence of the transient planar state during the homeotropic to focal conic transition in cholesteric liquid crystals,” Phys. Rev. E 61(4), 3951–3960 (2000).
[28] C.-H. Lin, R.-H. Chiang, C.-T. Kuo, and C.-Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
[29] S.-W. Kang, S. Sprunt and L.-C. Chien, “Structure and morphology of polymer- stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[30] D. Subacius, P. J. Bos and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[31] Andy Y.-G. Fuh, C.-H. Lin and C.-Y. Huang, “Dynamic Pattern Formation and Beam-Steering Characteristics of Cholesteric Gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[32] D. Subacius, S. V. Shiyanovskii, Ph. Bos1 and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[33] J. Chen, P. J. Bos1, H. Vithana and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[34] H.-C. Jau, T.-H. Lin, C.-W. Chen, and Andy Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[35] H. Rau, and J. F. Rabek, “Photochemistry and Photophysics,” 119–141, Boca Raton (1990).
[36] P. C. Mehta, and V. V. Rampal, “Laser-Induced Dynamics Grating,” World Scientific, Singapore (1993).
[37] M. Hara, S. Ichikawa, H. Takezoe, and A. Fukuda, “Binary Mass Diffusion Constants in Nematic Liquid Crystals Studied by Forced Rayleigh Scattering,” Jpn. J. Appl. Phys., 23(11), 1420–1425 (1984).
[38] S. S. Gong, D. Christensen, J. Zhang, C. H. Wang, “Holographic method for the investigation of the photochemical processes of Methyl red in poly(methyl methacrylate) and polystyrene,” J. Phys. Chem., 91(17), 4504–4056 (1987).
[39] W. M. Gibbons, P. J. Shannon, S-T Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature, 351, 49–50(1991).
[40] F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett., 22(8), 549–551 (1997).
[41] D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett., 28(26), 1683–1685 (1972).
[42] S. H. Kima and L. C. Chien “Short Pitch, Cholesteric electro-optical device stabilized by nonuniform polymer network,” Appl. Phys. Lett. 86(16), 161118 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code