Responsive image
博碩士論文 etd-0807117-111637 詳細資訊
Title page for etd-0807117-111637
論文名稱
Title
稀磁性氧化物半導體磁性與電性傳輸機制之研究
The magnetic and electric transport property research on diluted magnetic oxides semiconductor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-09-07
關鍵字
Keywords
弱侷域化效應、近藤效應、自旋極化率、稀磁性氧化物、稀磁性半導體
weak localization effect, Kondo effect, spin polarization, dilute magnetic semiconductor, dilute magnetic oxide
統計
Statistics
本論文已被瀏覽 5708 次,被下載 127
The thesis/dissertation has been browsed 5708 times, has been downloaded 127 times.
中文摘要
自旋電子學是目前最引人注目和感興趣的領域之一,它不僅可以擴展現有半 導體元件的功能,還能提供全新的操作概念。稀磁性氧化物能在半導體的狀態下 能同時擁有自旋極化和磁性質的特性也讓它成為其中之一的候選材料。因此在自 旋電子元件的應用上,瞭解稀磁性半導體中自旋極化的電荷和侷域磁矩之間的交 互作用力是一項很重要的議題。
在本論文中,我們藉由氧化銦摻雜鉻金屬的非晶相稀磁性氧化物半導體薄膜, 來探討出現的近藤效應、磁性傳輸過程中產生的通用 s-d 散射效應,以及用於解 釋低溫下透明導電氧化物傳輸行為的 3D 弱侷域化效應。透過上述的效應,我們 可以用來結合並精確的解釋在低溫下載流子的傳輸行為。而在低於最小電阻率溫 度的溫度下,近藤效應則是主導了整個磁電阻行為,並且提高了電阻率。
Abstract
Spintronic is one of the newest advanced and attracted wide ranges
interested technology for it can not only extend the functions of present semiconductor devices but also provide a brand-new operation concept. Dilute magnetic semiconductor (DMS), combines spin-polarization and magnetic properties in semiconducting state, are one of the candidate materials. Understanding the interaction between spin charge carriers and local magnetic moments in DMS is an important issue for applications in spintronic devices.
For this study, we examines amorphous chromium (Cr)-doped indium oxide (In2O3) diluted magnetic oxide semiconductor thin films for the existence of the Kondo effect, general s-d scattering effect on the magneto transport, and the well-known 3D weak localization effect that explains the low temperature transport behavior of transparent conducting oxides. The carrier transportation behavior at low temperature can be accurately described and well fit by a combination of these effects. At temperatures lower than the minimum resistivity temperature, the Kondo effect dominates the magnetoresistance effect and is responsible for the enhancement of resistivity.
目次 Table of Contents
論文審定書--------------------------------------------------------------------------i
博士論文公開授權書--------------------------------------------------------------ii
致謝--------------------------------------------------------------------------------- iii
中文摘要--------------------------------------------------------------------------- iv
Abstract-----------------------------------------------------------------------------v
Contents ---------------------------------------------------------------------------vi
Figure List-------------------------------------------------------------------------viii
Chapter 1 - Introduction
1-1 What are diluted magnetic semiconductors? -------------------------1
1-2 Why diluted magnetic semiconductors are important? -------------2
1-3 The choice of diluted magnetic oxide semiconductor --------------3
1-4 Motivation----------------------------------------------------------------------5
Chapter 1 References------------------------------------------------------------9
Chapter 2 - Experimental details and background
2-1 Introduction of Indium Oxide --------------------------------------------11
2-2 Methodologies of fabrication and measurement--------------------13
2-3 Bound magnetic polarons model ---------------------------------------17
2-4 Variable range hopping model ------------------------------------------20
2-5 Weak localization ----------------------------------------------------------21
2-6 Kondo effect -----------------------------------------------------------------24
Chapter 2 References----------------------------------------------------------28
Chapter 3 - Results and Discussion
3-1 Electric transport properties --------------------------------------------29
3-2 Magnetic properties -------------------------------------------------------35
3-3 Magnetic transport properties ------------------------------------------37
Chapter 3 References----------------------------------------------------------43
Chapter 4 – Summary----------------------------------------------------------45
參考文獻 References
Chapter 1 References
[1.1] S.A. Wolf, D.D. Awschalom et al., Science 294, 1488 (2001).
[1.2] H. Ohno, F. Matsukura, and Y. Ohno et al., JSAP international No. 5,4 (2002).
[1.3] H. Akinaga and H. Ohno, IEEE Trans. Nano. 1, No. 1, 19 (2002).
[1.4] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand, Science 287 1019 (2000)
[1.5] Matsumoto Y, Murakami M, Shono T, Hasegawa T,Fukumura T, Kawasaki M,
Ahmet P, Chikyow T,Koshihara S and Koinuma H, Science 291 854 (2001)
[1.6] VenkatesanM,FitzgeraldCB,LunneyJGandCoeyJMD, Phys. Rev. Lett. 93 177206
(2004)
[1.7] PhilipJ,PunnooseA,KimBI,ReddyKM,LayneS,Holmes J O, Satpati B, LeClair P R,
Santos T S andMoodera J S, Nature Mater. 5 298 (2006)
[1.8] Raebiger H, Lany S and Zunger A, Phys. Rev. Lett. 101 027203 (2008)
[1.9] H. Munekata, H. Ohno, S. von Molnar, A. Segmu ̈ller, L. L. Chang, and L. Esaki,
Phys. Rev. Lett. 63, 1849 (1989).
[1.10] L. Chen, X. Yang, F. Yang, J. Zhao, J. Misuraca, P. Xiong, and Stephan von
Molna ́r, Nano Lett. 11, 2584 (2011).
[1.11] H. S. Hsu, C. P. Lin, S. J. Sun, and H. Chou, Appl. Phys. Lett. 96, 242507
(2010).
[1.12] H. Chou, C. P. Lin, J. C. A. Huang, and H. S. Hsu, Phys. Rev. B 77, 245210
(2008).
[1.13] G. Thomas, Nature 389, 907 (1997).
[1.14] J. E. Medvedeva, Phys. Rev. Lett. 97, 086401 (2006).
[1.15] J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B.
Satpati, P. R. Leclair, T. S. Santos, and J. S.Moodera, Nature Mater. 5, 298
(2006).
[1.16] G. Peleckis, X. Wang, and S. X. Dou, Appl. Phys. Lett. 89, 022501 (2006).
[1.17] Panguluri R. P., Kharel P., Sudakar C., Naik R., Suryanarayanan R., Naik V. M.,
Petukhov A. G., Nadgorny B., and LawesG., Phys. Rev. B 79, 165208 (2009).
[1.18] C. Y. Hsu, J. Phys. D: Appl. Phys. 44, 415303 (2011).
[1.19] R. Ramaneti, J. C. Lodder, and R. Jansen, Phys. Rev. B 76, 195207 (2007).
[1.20] H. T. He, C. L. Yang, W. K. Ge, J. N. Wang, X. Dai, and Y. Q. Wang, Appl. Phys.
Lett. 87, 162506 (2005).
[1.21] L. P. Rokhinson and Y. Lyanda-Geller, Phys. Rev. B 76, 161201 (2007).
[1.22] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[1.23] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
Chapter 2 References
[2.1] C. Y. Hsu, J. Phys. D: Appl. Phys. 44, 415303 (2011).
[2.2] J. Torrance, M. Shafer, and T. McGuire, Phys. Rev. Lett. 29 1168 (1972)
[2.3] A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).
[2.4] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4, 173 (2005)
[2.5] Eslam Khalaf. Quora website, (2016).
[2.6] Charles Kittel, Introduction to Solid State Physics (2005).
[3.1] Panguluri R. P., Kharel P., Sudakar C., Naik R., Suryanarayanan R., Naik V. M., Petukhov A. G., Nadgorny B., and Lawes G., Phys. Rev. B 79, 165208 (2009).
[3.2] V. Bhosle, A. Tiwari, and J. Narayan, J. Appl. Phys. 100, 033713 (2006).
[3.3] Z. Ovadyahu, Phys. Rev. B 63, 235403 (2001).
[3.4] P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).
[3.5] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
[3.6] B. L. Altshuler, A. G. Aronov, A. I. Larkin, and D. E. Khmelnitskii, Sov. Phys. JETP 54, 411 (1981).
[3.7] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
[3.8] C. Y. Hsu, J. Phys. D: Appl. Phys. 44, 415303 (2011).
[3.9] N. Khare, M. J. Kappers, M. Wei, M. G. Blamire, and J. L. MacManus-Driscoll, Adv. Mat. 18, 1449 (2006).
[3.10] F. Reuss, S. Frank, C. Kirchner, R. Kling, Th. Gruber, and A. Waag, Appl.Phys. Lett. 87, 112104 (2005).
[3.11] M. Gacic, G. Jakob, C. Herbort, H. Adrian, T. Dietze, S. Bru ̈ck, and E. Goering, Phys. Rev. B 75, 205206 (2007).
[3.12] R. P. Khosla and J. R. Fischer, Phys. Rev. B 2, 4084 (1970).
[3.13] Yu-feng Tian, Yong-feng Li, and Tom Wu, Appl. Phys. Lett. 99, 222503 (2011)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code