Responsive image
博碩士論文 etd-0807117-122516 詳細資訊
Title page for etd-0807117-122516
論文名稱
Title
藍相液晶II晶格面控制機制研究
Study of lattice plane control of blue phase II liquid crystal
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-31
繳交日期
Date of Submission
2017-09-07
關鍵字
Keywords
晶格面、晶格轉向、光子晶體、藍相液晶、液晶
lattice plane, lattice orientation, photonic crystal, liquid crystal, blue phase liquid crystal
統計
Statistics
本論文已被瀏覽 5637 次,被下載 22
The thesis/dissertation has been browsed 5637 times, has been downloaded 22 times.
中文摘要
藍相液晶為膽固醇液晶的其中一種相態,他是自組裝的三維光子晶體結構存在的溫寬範圍狹窄。由於藍相液晶為三維光子晶體結構,因此在各個不同維度所展現出來的特性皆不相同。在先前的研究中已經有許多各種不同晶格面下的研究,但較少論文是整合研究該如何控制晶格面。在本研究室的移動長晶法中可以利用溫度梯度來使藍相液晶變成單一的晶體結構,在有這項技術後我們期望能更後續的控制生長出來的單晶晶體的堆疊方向,在後續能更方便的使用藍相液晶。
在本篇論文中我們利用沒有配向的ITO玻璃配合電場施加可以將BPII的晶體旋轉至(100)的排列。在水平配向中可以利用不同的螺距控制晶體排列成(100)或是(110)的晶體排列結構,且發現(110)的晶體會與rubbing方向夾一個特定的角度,因此在反水平配向的液晶盒中,晶體會生長成上下排列不同的藍相液晶, 此(110)的排列具有類似GMR的特性具有分光的效果,可藉由調整入射光角度來位移兩個反射波長的位置;此(110)晶體排列方向與厚度並沒有相依性。利用垂直配向可使藍相液晶整體排列成(111)的晶體結構,此(111)的晶體結構不隨螺距與厚度改變而影響晶體排列。在複合式液晶盒中最終的晶體排列方向取決於上方配向層頃向的晶體排列方向。
Abstract
Blue phase liquid crystal is a class of liquid crystal phases in chiral nematics, featuring self-assembled three-dimensional photonic crystal structure. The optical and electro-optical characteristics vary with lattice orientations. There have been a few reports on the properties and applications of photonic crystals with different orientations. However, a comprehensive discussion about how the lattice orientation can be controlled has yet been presented. Recently, our group also develops a gradient-temperature technique to grow blue phase liquid crystal into large single crystal form. The surface alignment assists in guiding the crystal growth in a specific orientation.
In this study, we successfully grow a (100)-oriented blue phase by applying an electric field on an ITO-coated glass without alignment layers. In a homogeneous aligned cell, we successfully control the lattice orientation to (100) or (110) by change the pitch. We find the direction of (110)-oriented blue phase has a significant relation with the direction of rubbing on substrates. If we use anti-rubbing homogeneous-aligned cell, it has two blue phase structures in the bulk due to the influence of rubbing. The lattice orientation of (110) has a GMR-like characteristic and has the effect of splitting, and the position of the two reflection wavelengths can be shifted by adjusting the angle of the incident light. The lattice orientation is independent of a cell gap because the blue phase liquid crystal grow from the surfaces of the substrates. In a homeotropic-aligned cell, we successfully induce (111)-oriented and the orientation in independent of a cell gap and a pitch. In a hybrid cell, the final lattice orientation depends on the direction of the crystal orientation of the upper alignment layer.
目次 Table of Contents
學位論文審訂書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 液晶簡介 1
1-1 液晶簡介 1
液晶態與秩序性 1
液晶的雙折射性 4
連續彈性能理論 6
液晶配向 7
膽固醇液晶 8
1-2 藍相液晶 10
光子晶體 10
藍相液晶的相變行為 11
藍相液晶晶體結構 13
第二章 實驗材料與實驗方法 20
2-1 實驗用材料 20
2-2 液晶盒製作 23
2-3背景知識與量測方法 25
第三章 結果與討論 31
3-1 (100)的晶格面控制 31
3-2 (110)的晶格面控制 33
雙面水平配向 33
雙面水平配向單面rubbing且rubbing面朝下 35
雙面水平配向單面rubbing且rubbing面朝上 36
單面水平配向另一面為ITO玻璃且水平配向面朝下 37
單面水平配向另一面為ITO玻璃且水平配向面朝上 38
左旋藍相液晶單面水平配向rubbing面朝上 39
釐清雙反射波長 40
螺距對(110)排列的影響 44
厚度對(110)排列的影響 48
3-3 (111)的晶格面控制 49
雙面垂直配向 49
雙面垂直配向單面rubbing且rubbing面朝上 50
單面垂直配向有rubbing與單面ITO玻璃且垂直面朝上 51
螺距對(111)排列的影響 52
厚度對(111)排列的影響 53
3-4 混合式液晶盒對晶格面的影響 54
水平配向朝上垂直配向朝下 54
水平配向朝下垂直配向朝上 55
第四章 結論與未來展望 57
4-1結論 57
4-2未來工作 58
參考資料 59
參考文獻 References
1. D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Handbook of liquid crystals, low molecular weight liquid crystals I: calamitic liquid crystals (John Wiley & Sons, 2011).
2. A. Yariv, Optical electronics in modern communications (Oxford University Press, USA, 1997), Vol. 1.
3. P. J. Collings and M. Hird, Introduction to liquid crystals: chemistry and physics (CRC Press, 1997).
4. H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D.-K. Yang, "Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies," Soft Matter 11, 1208-1213 (2015).
5. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II," Nature materials 1, 111-113 (2002).
6. Y.-T. Lin, H.-C. Jau, and T.-H. Lin, "Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal," Journal of Applied Physics 113, 063103 (2013).
7. S.-J. Ge, W. Ji, G.-X. Cui, B.-Y. Wei, W. Hu, and Y.-Q. Lu, "Fast switchable optical vortex generator based on blue phase liquid crystal fork grating," Opt. Mater. Express 4, 2535-2541 (2014).
8. C.-H. Lin, Y.-Y. Wang, and C.-W. Hsieh, "Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals," Optics letters 36, 502-504 (2011).
9. S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, "Polarization-independent and fast tunable microlens array based on blue phase liquid crystals," Optics express 22, 925-930 (2014).
10. C.-T. Wang, Y.-C. Li, J.-H. Yu, C. Y. Wang, C.-W. Tseng, H.-C. Jau, Y.-J. Chen, and T.-H. Lin, "Electrically tunable high Q-factor micro-ring resonator based on blue phase liquid crystal cladding," Optics express 22, 17776-17781 (2014).
11. Y.-H. Chen, C.-T. Wang, C.-P. Yu, and T.-H. Lin, "Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time," Optics express 19, 25441-25446 (2011).
12. G. Zhu, B.-y. Wei, L.-y. Shi, X.-w. Lin, W. Hu, and Y.-q. Lu, "A fast response variable optical attenuator based on blue phase liquid crystal," Optics express 21, 5332-5337 (2013).
13. J. Yan, S.-T. Wu, K.-L. Cheng, and J.-W. Shiu, "A full-color reflective display using polymer-stabilized blue phase liquid crystal," Applied Physics Letters 102, 081102 (2013).
14. K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, "Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal," Journal of display technology 6, 49-51 (2010).
15. Y. Chen, J. Yan, J. Sun, S.-T. Wu, X. Liang, S.-H. Liu, P.-J. Hsieh, K.-L. Cheng, and J.-W. Shiu, "A microsecond-response polymer-stabilized blue phase liquid crystal," Applied Physics Letters 99, 201105 (2011).
16. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical review letters 58, 2486 (1987).
17. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university press, 2011).
18. C.-W. Chen, H.-C. Jau, C.-H. Lee, C.-C. Li, C.-T. Hou, C.-W. Wu, T.-H. Lin, and I. C. Khoo, "Temperature dependence of refractive index in blue phase liquid crystals," Opt. Mater. Express 3, 527-532 (2013).
19. R. J. Miller and H. F. Gleeson, "Lattice parameter measurements from the Kossel diagrams of the cubic liquid crystal blue phases," Journal de Physique II 6, 909-922 (1996).
20. A. Januszko, P. Kaszynski, and W. Drzewinski, "Ring effect on helical twisting power of optically active mesogenic esters derived from benzene, bicyclo [2.2. 2] octane and p-carborane carboxylic acids," Journal of Materials Chemistry 16, 452-461 (2006).
21. S. Meiboom and M. Sammon, "Structure of the blue phase of a cholesteric liquid crystal," Physical Review Letters 44, 882 (1980).
22. A. Saupe, "On molecular structure and physical properties of thermotropic liquid crystals," Molecular Crystals and Liquid Crystals 7, 59-74 (1969).
23. T.-H. Lin, C.-W. Chen, and Q. Li, "Self-Organized 3D Photonic Superstructure: Blue Phase Liquid Crystal," in Anisotropic Nanomaterials (Springer, 2015), pp. 337-378.
24. N. Yamamoto, S. Noda, and A. Sasaki, "New realization method for three-dimensional photonic crystal in the optical wavelength region: experimental consideration," Japanese journal of applied physics 36, 1907 (1997).
25. Y. A. Vlasov, B. Xiang-Zheng, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289 (2001).
26. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, "Polymer-stabilized liquid crystal blue phases," Nature materials 1, 64-68 (2002).
27. H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, "Nanoparticle-stabilized cholesteric blue phases," Applied physics express 2, 121501 (2009).
28. S. Shibayama, H. Higuchi, Y. Okumura, and H. Kikuchi, "Dendron‐stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices," Advanced Functional Materials 23, 2387-2396 (2013).
29. Y. Chen and S.-T. Wu, "Electric field-induced monodomain blue phase liquid crystals," Applied Physics Letters 102, 171110 (2013).
30. M. Chen, Y.-H. Lin, H.-S. Chen, and H.-Y. Chen, "Electrically assisting crystal growth of blue phase liquid crystals," Opt. Mater. Express 4, 953-959 (2014).
31. S. Meiboom, M. Sammon, and D. Berreman, "Lattice symmetry of the cholesteric blue phases," Physical Review A 28, 3553 (1983).
32. K. Kim, S.-T. Hur, S. Kim, S.-Y. Jo, B. R. Lee, M. H. Song, and S.-W. Choi, "A well-aligned simple cubic blue phase for a liquid crystal laser," Journal of Materials Chemistry C 3, 5383-5388 (2015).
33. P. Joshi, X. Shang, J. De Smet, E. Islamai, D. Cuypers, G. Van Steenberge, S. Van Vlierberghe, P. Dubruel, and H. De Smet, "On the effect of alignment layers on blue phase liquid crystals," Applied Physics Letters 106, 101105 (2015).
34. S.-i. Yamamoto, Y. Haseba, H. Higuchi, Y. Okumura, and H. Kikuchi, "Lattice plane control of liquid crystal blue phase," Liquid Crystals 40, 639-645 (2013).
35. H.-S. Chen, Y.-H. Lin, C.-H. Wu, M. Chen, and H.-K. Hsu, "Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles," Opt. Mater. Express 2, 1149-1155 (2012).
36. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, and T.-H. Lin, "Pinning effect on the photonic bandgaps of blue-phase liquid crystal," Applied optics 50, 1606-1609 (2011).
37. P. Pollmann and E. Voss, "High pressure optical studies of the chirality and phase behaviour of liquid crystalline blue phases," Liquid crystals 23, 299-307 (1997).
38. F. Castles, S. Morris, J. Hung, M. Qasim, A. Wright, S. Nosheen, S. Choi, B. Outram, S. Elston, and C. Burgess, "Stretchable liquid-crystal blue-phase gels," Nature materials 13, 817-821 (2014).
39. A. Chanishvili, G. Chilaya, G. Petriashvili, and P. J. Collings, "Trans-cis isomerization and the blue phases," Physical Review E 71, 051705 (2005).
40. Y. Kawata, H. Yoshida, S. Tanaka, A. Konkanok, M. Ozaki, and H. Kikuchi, "Anisotropy of the electro-optic Kerr effect in polymer-stabilized blue phases," Physical Review E 91, 022503 (2015).
41. J.-D. Lin, S.-Y. Huang, H.-S. Wang, S.-H. Lin, T.-S. Mo, C.-T. Horng, H.-C. Yeh, L.-J. Chen, H.-L. Lin, and C.-R. Lee, "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell," Optics express 22, 29479-29492 (2014).
42. J.-D. Lin, T.-Y. Wang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, "Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase," Scientific reports 6, 30407 (2016).
43. F. Castles, F. Day, S. Morris, D.-H. Ko, D. Gardiner, M. Qasim, S. Nosheen, P. Hands, S. Choi, and R. Friend, "Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications," arXiv preprint arXiv:1310.7246 (2013).
44. C.-T. Wang, H.-Y. Liu, H.-H. Cheng, and T.-H. Lin, "Bistable effect in the liquid crystal blue phase," Applied Physics Letters 96, 041106 (2010).
45. P. Nayek, N. H. Park, S. C. Noh, S. H. Lee, H. S. Park, H. J. Lee, C.-T. Hou, T.-H. Lin, and H. Yokoyama, "Analysis of surface anchored lattice plane orientation in blue phase liquid crystal and its in-plane electric field-dependent capacitance response," Liquid Crystals 42, 1111-1119 (2015).
46. S. Tanaka, H. Yoshida, Y. Kawata, R. Kuwahara, R. Nishi, and M. Ozaki, "Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy," Scientific reports 5(2015).
47. T. H. Lin, Y. Li, C. T. Wang, H. C. Jau, C. W. Chen, C. C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, "Red, Green and Blue Reflections Enabled in an Optically Tunable Self‐Organized 3D Cubic Nanostructured Thin Film," Advanced Materials 25, 5050-5054 (2013).
48. E. Oton, E. Netter, T. Nakano, and F. Inoue, "Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation," Scientific Reports 7, srep44575 (2017).
49. H.-Y. Chen and Y.-C. Hsieh, "Lattice structure in liquid-crystal blue phase with various chiral concentrations," Liquid Crystals 42, 1472-1477 (2015).
50. P. Pierański, P. Cladis, T. Garel, and R. Barbet-Massin, "Orientation of crystals of blue phases by electric fields," Journal de Physique 47, 139-143 (1986).
51. J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and J. J. de Pablo, "Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals," Nature Communications 8, ncomms15854 (2017).
52. R. J. Miller and H. F. Gleeson, "Order parameter measurements from the Kossel diagrams of the liquid-crystal blue phases," Physical Review E 52, 5011 (1995).
53. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Applied optics 32, 2606-2613 (1993).
54. T. Nishi and T. Wang, "Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures," Macromolecules 8, 909-915 (1975).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code