Responsive image
博碩士論文 etd-0807117-154135 詳細資訊
Title page for etd-0807117-154135
論文名稱
Title
磷酸鋰鐵電池之電壓微分充放電策略
Charging/Discharging Strategy with Differential Voltage Method for Lithium Iron Phosphate Battery
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-21
繳交日期
Date of Submission
2017-09-07
關鍵字
Keywords
磷酸鋰鐵電池、電池健康狀態、過充放電、定電流-定電壓充電法、電池電量狀態、電壓微分法
over-charging/discharging, Constant-current constant-voltage charging method, differential voltage approach, lithium iron phosphate battery, state-of-charge (SOC), state-of-health (SOH)
統計
Statistics
本論文已被瀏覽 5699 次,被下載 364
The thesis/dissertation has been browsed 5699 times, has been downloaded 364 times.
中文摘要
本論文嘗試對磷酸鋰鐵電池擬定操作策略,增加使用者在應用時的效率與彈性。此策略於一般應用時,犧牲部分可用電量,將磷酸鋰鐵電池運用於內阻較小的電壓平坦區間,以縮短充電時間,提高能量轉換效率,並經由電池過充放電實驗及健康狀態(State-of-health, SOH)追蹤,擴展安全使用的上下限範圍。本文分析磷酸鋰鐵電池的充放電特性,歸納出高效率的電量利用區間,以定電流充電為基礎,提出電壓微分法,執行充放電,實現此操作策略。採電壓微分法,不須依賴電池廠商提供之充放電參數,也不用考慮電池當下的電量狀態(State-of-charge, SOC)與個別特性差異,以電量對電壓的微分,設定高效率應用區間的充放電截止條件。
本研究中以三種不同廠牌(分別以A、S、K命名)的磷酸鋰鐵電池驗證此操作策略的可行性,並與目前常用的定電流-定電壓(Constant-current constant-voltage, CC-CV)法比較。實驗結果顯示,於1 C的充放電流下, A牌與S牌的電池採電壓微分法,犧牲約12 %與10 %的容量,但可縮短16 %與12 %的充電時間,且充放電能量效率分別提升0.76 %與0.49 %。另外,K牌電池減少約20 %的應用容量,但可縮短31 %的充電時間,提升0.50 %的能量效率。最後以A牌電池為例,於特殊應用中,可過充入13 %的電量;若遇緊急狀態時,尚保有9 %供緊急應變彈性利用的電量。
Abstract
This research attempts to develop a tactical operational strategy for the lithium iron phosphate battery to improve the energy efficiency and flexibility. To improve the energy efficiency and shorten the charging time, the proposed strategy sacrifices a part of the available capacity by making use of the flat-voltage region for general purpose running. On the other hand, the upper and lower limits of the safe operation can be expanded in accordance with the experimental evidences of over-charging/discharging and state-of-health (SOH) tracking. To realize this operation strategy, the battery charging and discharging characteristics are analyzed to induce the more efficient operation region. Accordingly, the voltage differential approach is figured out with constant-current charging. Then, the cut-off points can be determined without the need of the battery parameters from the manufacturer or an accurate estimation of the state-of-charge (SOC), disregarding to differences on battery operating characteristics.
The feasibility of the proposed strategy has been demonstrated with three different brands of lithium iron phosphate batteries, which are named as A, S, and K, respectively. As compared to the conventionally used constant-current constant-voltage (CC-CV) scheme with a charging/discharging rate of 1 C, Batteries A and S with the differential voltage approach, have a less capacity of 12 % and 10 %, but can shorten the charging time by 16 % and 12 % with improved energy efficiencies of 0.76 % and 0.49 %, respectively, while Battery K has a reduced capacity of about 20 %, but a 31 % shorter charging time with an improved energy efficiency of 0.50 %. Exemplar experiments indicate that Battery A can be over charged by 13 % for a predicative longer duration and has a residual capacity of 9 % for emergent running.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 vi
符號表 vii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 論文大綱 3
第二章 鋰離子電池與充電方法 4
2-1 鋰離子電池介紹 4
2-2 充電方法 9
2-3 實驗設置與符號定義 12
第三章 鋰離子電池充放電特性 16
3-1 鋰離子電池特性實測 16
3-2 過充放電特性 20
第四章 電壓微分充放電法 29
4-1 電壓微分法 29
4-2 轉折點之有載電壓與電量特性 31
4-3 實驗驗證 34
4-4 電壓微分法之老化趨勢 40
第五章 結論與未來研究 42
5-1 結論 42
5-2 未來研究方向 45
參考文獻 46
參考文獻 References
[1] C. C. Chan and K. T. Chau, “An Overview of Electric Vehicles-Challenges and Opportunities,” in Procs. IECON, vol. 1, pp. 1-6, August 1996.
[2] H. Oman, “Battery Developments That Will Make Electric Vehicles Practical,” IEEE Aerosp. Electron. Syst. Mag., vol. 15, no. 8, pp. 11-21, August 2000.
[3] 陳敏睿,“汰換之電動車電池再利用之直流微電網運轉”,國立中山大學電機工程研究所碩士論文,2013 年9 月。
[4] 薛乃綺,陳靖惠、謝寶賢,“綠色節能趨勢下探索電動車零組件的發展與新興機會”,台灣經濟部技術處,台灣台北,2010 年12 月。
[5] D. Guyomard and J.M. Tarascon, “Rocking-Chair or Lithium-Ion Rechargeable Lithium Batteries”, Advanced Materials, vol.6, no.5, pp. 408-412, May 1994.
[6] M. S. Whittingham, “Electrical Energy Storage and Intercalation Chemistry,”Science, vol. 192, no. 4244, pp. 1126-1127, June 1976.
[7] 柯賢文,“鋰電池”,科學發展,2013 年2 月,482 期pp. 50-59。
[8] 林振華,林振富,充電式鋰離子電池:材料與應用,初版,全華科技圖書,2002年1 月。
[9] 吳志忠,“電動車電池管理系統與法規(SAE J1772)之研究”,國立高雄第一科技大學電子工程研究所碩士論文,2012 年11 月。
[10] 林偉凱,“認識新一代電池材料:鋰金屬”,金屬情報網MII,2012 年。
[11] 戴玉珍、蕭瑞聖、尤如瑾,“綠色節能出車輛技術與產品發展趨勢”,台灣經濟部技術處,台灣台北,2005 年10 月。
[12] 黃鎮江、趙中興,綠能電動車,儒林圖書有限公司,台灣台北,2010 年8 月。
[13] 黃樑傑,“電動車產業發展與展望”,財團法人車輛研究測試中心,台灣彰化,
2016 年5 月。
[14] F. Larsson, “Assessment of Safety Characteristics for Li-Ion Battery Cells by Abuse Testing”, Chalmers University of Technology, Sweden, 2014. Available Online:
http://publications.lib.chalmers.se/records/fulltext/202184/202184.pdf
[15] L. Benini, D. Bruni, A. Macii, E. Macii, and M. Poncino, “Discharge Current Steering for Battery Lifetime Optimization,” IEEE Trans. on Computers, vol. 52, no. 8, pp. 985-995, August 2003.
[16] 孫建中、許盈皓、劉秋昱、凌守弘、林炳明,“最佳充電速率調控技術”,工業雜誌材料327 期,pp.134-142,2014 年03 月。
[17] C. W. Seitz, “Industrial Battery Technologies and Markets,” in Procs. IEEE AESM, vol. 9, no. 5, pp. 10-15, May 1994.
[18] Q. Wanga, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, “Thermal Runaway
Caused Fire and Explosion of Lithium-Ion Battery,” Journal of Power Sources, vol. 208, pp. 210-224, June 2012.
[19] 蔡宗榮,“磷酸鋰鐵電池高頻放電特性之研究”,國立中山大學電機工程研究所碩士論文,2010 年7 月。
[20] K. S. Ng, C. S. Moo, Y. C. Lin, and Y. C. Hsieh, “Investigation on Intermittent Discharging for Lead-Acid Batteries,” in Procs. IEEE PESC, pp. 4683-4688, June 2008.
[21] Y. C. Hsieh, W. C. Chen, K. S. Ng, and C. S. Moo, “Investigation on Operating Characteristics of Individual Cells in A Lead-Acid Battery Pack,” in Procs. PCC, pp. 745-750, April 2007.
[22] 陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程研究所碩士論文,2007 年6 月。
[23] S. Y. Chan, Y. N. Chang, Y. S. Yang and H. L. Cheng, “A Single-Stage High Power-Factor Lithium Battery Charger Having Reflex Charging Mechanism,” in Procs. IEEE IFEEC, pp. 1926-1931, June 2017.
[24] L. Benini, D. Bruni, A. Macii, E. Macii, and M. Poncino, “Discharge Current Steering for Battery Lifetime Optimization,” IEEE Trans. on Computer, vol. 52, no. 8, pp. 985-995, August 2003.
[25] H. C. Chen, H. H. Chou, S.L. Wu, H. C. Chen ,and L. R. Chen, “ReflexTM Waveform Discussed by AC Impedance Impact on Lithium-Ion Battery Charging Effects,” in Procs. IEEE ICIEA, pp. 146-150, June 2014.
[26] 林昱超,“鉛酸電池之間歇放電態樣研究”,國立中山大學電機工程研究所碩士論文,2007 年6 月。
[27] M. Dubarry, V. Svoboda, R. Hwa, and B. Y. Liaw, “Capacity Loss in Rechargeable Lithium Cells During Cycle Life Testing: The Importance of Determining State-of-Charge,” J. Power Sources, vol. 174, no. 2, pp. 1121-1125, December 2007.
[28] A. AL-Refai., O. Rawashdeh, and R. Abousleiman, “An Experimental Survey of Li-Ion Battery Charging Methods,” SAE Int. J. Alt. Power, vol. 5, no. 1, pp. 23-29, May 2016.
[29] 鄭戎傑,“鉛酸電池脈衝充電特性研究”,國立中山大學電機工程研究所碩士論文,2003 年5 月。
[30] 杜冠賢,“鋰離子電池充電器研製”,國立中正大學電機工程研究所碩士論文,2007 年6 月。
[31] 張瓊仁,“鎳氫電池電容量管理之研究”,國立中山大學電機工程研究所碩士論文,2005 年7 月。
[32] D. H. Doughty and E. P. Roth, “A General Discussion of Li Ion Battery Safety,”Electrochemical Society Interface, vol. 21, no. 2, pp. 37-44, June 2012.
[33] Isidor Buchmann, Batteries in A Portable World, Third Edition, Published by Cadex Electronics Inc., April 2011.
[34] 孫清華,最新可充電電池技術大全,全華科技圖書,2003 年。
[35] 黃可龍、王兆翔、劉素琴,鋰離子電池原理與技術,初版,五南,2010 年5 月。
[36] 陳彥旭,呂國旭,廖權能,許峰彰,“鋰離子電池之負極碳材料發展現況”,台灣中油,石油季刊,第48 卷第4 期,pp. 75-86,2012 年12 月。
[37] N. Yabuuchi, T. Ohzuku, “Novel Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-Ion Batteries,” Journal of Power Sources, vol. 119–121, pp.171–174, June 2003.
[38] 李長恩,“以數位控制實現之三種鋰離子電池充電法則”,國立台北科技大學電機工程研究所碩士論文,2011 年7 月。
[39] J. Cho, T. J. Kim, J. Kim, M. Noh, and B. Park, “Synthesis, Thermal, and
Electrochemical Properties of AIPO4-Coated LiNi0.8Co0.1Mn0.1O2 Cathode Materials for A Li-Ion Cell,” Journal of The Electrochemical Society, vol. 151, no. 11, pp.1899-1904, October 2004.
[40] J. Cho, H. Kim, and B. Park, “Comparison of Overcharge Behavior of AIPO4-Coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 Cathode Materials in Li-Ion Cells,” Journal of The Electrochemical Society, vol. 151, no. 10, pp. 1707-1711, September 2004.
[41] J. Kim, M. Noh, and J. Cho, “Improvement of 12 V Overcharge Behavior of LiCoO2 Cathode Material by LiNi0.8Co0.1Mn0.1O2 Addition in A Li-Ion Cell,” Journal of Power Sources, vol. 153, pp. 345-349, June 2006.
[42] Bryan Christie, How Stuff Works, 2006.
[43] A123 Systems, Inc. (2011, July 28). ANR26650m1B (1st Edition). Available Online: http://www.a123systems.com
[44] 朱璨雍,“18650 鋰電池熱爆炸危害評估技術”,國立雲林科技大學環境與安全衛生工程研究所碩士論文,2011 年6 月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code