Responsive image
博碩士論文 etd-0808108-102949 詳細資訊
Title page for etd-0808108-102949
論文名稱
Title
YDL100c 基因缺失對釀酒酵母在添加鋅離子時生長的影響
Effect of YDL100c Deficiency on the Growth of Saccharomyces cerevisiae in the Presence of Zinc
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-26
繳交日期
Date of Submission
2008-08-08
關鍵字
Keywords
釀酒酵母、鋅離子
YDL100c Deficiency, Saccharomyces cerevisiae, Zinc
統計
Statistics
本論文已被瀏覽 5700 次,被下載 4
The thesis/dissertation has been browsed 5700 times, has been downloaded 4 times.
中文摘要
ArsA是大腸桿菌抗砷系統中的催化次單元,可利用ATP的能量將進入細胞的砷化物及銻化物排出而產生抗性。YDL100cp是釀酒酵母中的ArsA同源蛋白,先前研究結果顯示YDL100cp與釀酒酵母的抗砷性機制無直接關係,但缺乏YDL100c基因的釀酒酵母對鋅離子具敏感性,且此敏感性在37oC時比在30oC時更為顯著。本研究為探討YDL100c基因對鋅離子敏感性表現的影響,將野生型菌株(WT)及YDL100c基因缺乏的突變株(KO)分別於30oC和37oC培養6小時觀察添加鋅離子的影響,並針對菌株的trehalose累積、細胞內分子氧化程度與GSH含量進行分析。初步結果顯示,生長於37oC時,KO的生長比WT落後,且其細胞內氧化程度較WT增加。添加鋅離子後,只有生長於37oC時,KO的細胞內氧化程度比WT增加,GSH含量較少於WT,而進一步分析抗氧化系統與相關基因的功能時,顯示在37oC成長的WT和KO,其SOD1的表現並無顯著差異,其CTT1的表現量則是KO低於WT,添加鋅離子後,對WT及KO的catalase活性均有促進作用,但KO的活性仍低於WT,而KO的CTT1的表現量在37oC添加鋅離子後並無太大差異,顯示溫度效應大於金屬離子效應。綜合以上結果YDL100c基因的缺失造成KO在37oC時的一般壓力反應的活化有缺失,使得GSH含量下降及trehalose的累積,造成細胞內氧化程度增加,而間接造成KO在37oC生長時對鋅離子的敏感性。
Abstract
ArsA is the catalytic component of an arsenite extrusion pump in E. coli that confers arsenite and antimonite resistance. YDL100cp is the ArsA homologous protein found in S. cerevisiae. Previous studies show that YDL100c gene is not directly related to arsenical resistance mechanism in S. cerevisiae but the YDL100c disrupted strain (KO) showed sensitivity to Zn2+ at 30oC and more pronounced sensitivity at 37oC. To study the role of YDL100c on Zn2+ sensitivity, wild type strain (WT) and KO were grown at 30oC and 37oC for 6 hr after adding Zn2+. Both strains were assayed for trehalose accumulation, intracellular oxidation level and GSH content. The results demonstrate that KO had a decreased growth and increased intracellular oxidation at 37oC when compared to WT. Addition of Zn2+ did not increase the intracellular oxidation in WT and KO grown at 30oC but to a greater extent in KO compared to WT grown at 37oC. Further assess the function of antioxidant genes shows that there is no significant difference in SOD1 expression between KO and WT grown at 37oC but CTT1 expression is low in KO. There is an increase in catalase activity for both WT and KO by adding Zn2+ at 30oC or 37oC, but the level of catalase activity to KO is still lower than that of WT.In conclusion, a defect of YDL100c results in a defect in the activation of general stress response at 37oC. Consequently, the cause of the increased level of intracellular oxidation of KO in the presence of Zn2+ grown at 37oC is most likely related to the decrease in cellular GSH content and trehalose accumulation in KO compared to that of WT. Therefore, the pronounced sensitivity to Zn2+ at 37oC is mainly due to a defect in general stress response in KO when grown at 37oC.
目次 Table of Contents
摘要--------------------------------------------------------------------------1
背景介紹--------------------------------------------------------------------5
材料與方法----------------------------------------------------------------18
結果-------------------------------------------------------------------------26
討論-------------------------------------------------------------------------31
參考文獻-------------------------------------------------------------------39
表----------------------------------------------------------------------------42
圖----------------------------------------------------------------------------43
附表-------------------------------------------------------------------------50
附圖-------------------------------------------------------------------------51
參考文獻 References
1. Zhou, T., Radaev, S., Rosen, B. P. & Gatti, D. L. (2000). Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. Embo J, 19: 4838-4845.
2. Suzuki, K., Wakao, N., Kimura, T., Sakka, K. & Ohmiya, K. (1998). Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol, 64: 411-418.
3. Rosen, B. P. & Borbolla, M. G. (1984). A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli. Biochem Biophys Res Commun, 124: 760-765.
4. Metz, J., Wachter, A., Schmidt, B., Bujnicki, J. M. & Schwappach, B. (2006). The yeast Arr4p ATPase binds the chloride transporter Gef1p when copper is available in the cytosol. J Biol Chem, 281: 410-417.
5. 洪詩雅. (2002). 酵母菌中YDL100c 基因之表現及其可能功能探討, 國立中山大學生物科學研究所碩士論文.
6. Vincent, J. H., N. A., Geoffrey, W. T., Michael, B., Veronica, L., & Ian, W.D. (2002). Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast, 19: 203–214
7. Shen, J., Hsu, C. M., Kang, B. K., Rosen, B. P., & Bhattacharjee, H. (2003). The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals, 16: 369-378.
8. Rosen, B. P. (2007). Arsenic metabolism in prokaryotic and eukaryotic microbes. Molecular Microbiology of Heavy Metals.
9. Zuniga, S., Boskovic, J., Jimenez, A., Ballesta, J. P. & Remacha, M. (1999). Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants. Yeast, 15: 945-953.
10. 許展榮. (2006). YDL100c基因缺失對釀酒酵母在t-BOOH下生長的影響, 國立中山大學生物科學研究所碩士論文.
11. Arunakumara., K. K. I. U. & Xuecheng., Z. (2008). Heavy metal bioaccumulation and toxicity with special reference to microalgae oceanic and coastal sea research7: 60-64.
12. 郭雅帛. (2002). ArsA 同源蛋白ARR4 在酵母細胞熱耐受性表現的角色, 國立中山大學生物科學系研究所碩士論文.
13. 陳涵茵. (2004). yArsA蛋白在釀酒酵母熱耐受性所扮演的角色, 國立中山大學生物科學研究所碩士論文.
14. 葉瓊霞. (2001). 釀酒酵母中YDL100c基因之表現及可能功能探討, 國立中山大學生物科學研究所碩士論文.
15. Pereira, M. D., Herdeiro, R. S., Fernandes, P. N., Eleutherio, E. C. & Panek, A. D. (2003). Targets of oxidative stress in yeast sod mutants. Biochim Biophys Acta, 1620: 245-251.
16. Davidson, J. F., Whyte, B., Bissinger, P. H. & Schiestl, R. H. (1996). Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 93: 5116-5121.
17. Martinez-Pastor, M. T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H. & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE) Embo J, 15: 2227-2235.
18. Ruis, H. & Schuller, C. (1995). Stress signaling in yeast. Bioessays, 17: 959-965.
19. Costa, V., & Moradas-Ferreira, P. (2001). Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med, 22: 217-246.
20. Estruch, F. & Carlson, M. (1993). Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol, 13: 3872-3881
21. Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J. (1999). Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem, 274: 16040-16046
22. Izawa, S., Ikeda, K., Ohdate, T. & Inoue, Y. (2007). Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem Biophys Res Commun, 352:750-755.
23. Kuge, S., Jones, N. & Nomoto, A. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. Embo J, 16(7), 1710-1720
24. Yan, C., Lee, L. H. & Davis, L. I. (1998). Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. Embo J, 17: 7416-7429.
25. Simm, C. L., B.Salt, D.LeFurgey, A., ngram, P., Yandell, B.& Eide, D. J. (2007). Saccharomyces cerevisiae vacuole in zinc storage and intracellular zinc distribution. Eukaryot Cell, 6: 1166-1177.
26. 洪蓴仁、孫惠鈺、黃偉邦.鎘離子與鋅離子對出芽酵母菌細胞自噬的誘導研究,國立臺灣大學生命科學系.
27. Markus J. Tamas, J. L., Michel B. Toledano, & Wysocki, R. (2005). Mechanisms of toxic metal tolerance in yeast. Molecular Biology of Metal Homeostasis and Detoxification, 14: 421-424.
28. Cheraiti, N., Sauvage, F. X. & Salmon, J. M. (2008). Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 77: 1093-1109.
29. J.Jamieson, D. (1998). Oxidative Stress Response of the Yeast Saccharomyces cerevisiae Yeast, 14: 1511-1527.
30. Izawa, S., Inoue, Y. & Kimura, A. (1996). Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J, 320: 61-67.
31. Lushchak, V. I. & Gospodaryov, D. V. (2005). Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Int, 29: 187-192.
32. Espindola Ade, S., Gomes, D. S., Panek, A. D.& Eleutherio, E. C. (2003). The role of glutathione in yeast dehydration tolerance. Cryobiology, 47: 236-241.
33. Jules, M., Guillou, V., Francois, J. & Parrou, J. L. (2004). Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol, 70: 2771-2778.
34. Van Dijck, P., Colavizza, D., Smet, P. & Thevelein, J. M. (1995). Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol, 61: 109-115.
35. Hottiger, T., Schmutz, P. & Wiemken, A. (1987). Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol, 169: 5518-5522.
36. Nwaka, S., Mechler, B., Destruelle, M. & Holzer, H. (1995). Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett, 360: 286-290.
37. Hissin, P. J. & Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem, 74: 214-226.
38. Senft, A. P., Dalton, T. P. & Shertzer, H. G. (2000). Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Anal Biochem, 280: 80-86.
39. Franca, M. B., Panek, A. D. & Eleutherio, E. C. (2005). The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae. Cell Stress Chaperones, 10: 167-170.
40. Yamamoto, A., Ueda, J., Yamamoto, N., Hashikawa, N. & Sakurai, H. (2007). Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot Cell, 6:1373-1379.
41. Lin, L. H., Lee, H. C., Li, W. H. & Chen, B. S. (2007). A systematic approach to detecting transcription factors in response to environmental stresses. BMC Bioinformatics, 8: 473.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.195.249
論文開放下載的時間是 校外不公開

Your IP address is 3.135.195.249
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code