Responsive image
博碩士論文 etd-0808110-015805 詳細資訊
Title page for etd-0808110-015805
論文名稱
Title
利用化學氣相沉積法生長非極性之氮化鎵(10-10)薄膜在LiGaO2基板
Growth of Nonpolar GaN (10-10) Films on LiGaO2 Substrate by Chemical Vapor Deposition Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-08-08
關鍵字
Keywords
化學氣相沉積法、鎵酸鋰、氮化鎵
CVD, LiGaO2, GaN
統計
Statistics
本論文已被瀏覽 5622 次,被下載 0
The thesis/dissertation has been browsed 5622 times, has been downloaded 0 times.
中文摘要
本實驗研究中,我們以化學氣相沉積法(chemical vapor deposition, CVD)在鎵酸鋰 (lithium gallate, LiGaO2 , LGO)基板上成長非極性氮化鎵(GaN, gallium nitride)薄膜。以金屬鎵(metallic gallium)及氨氣(NH3)分別作為Ga及N的來源。實驗分成兩組:一組在氨氣(NH3)氣氛下升溫,改變反應壓力做為實驗條件;另一組則在氮氣(N2)氣氛下升溫完後,再通入氨氣反應,改變反應溫度做為實驗條件。
反應後的試片再以X光繞射(X-ray diffraction)、掃描式電子顯微鏡(scanning electron microscope)、電子背向散射繞射(electron back-scattered diffraction)、原子力顯微鏡(atomic force microscope)、光激發光譜(photoluminescence spectroscopy)和穿透式電子顯微鏡(transmission electron microscopy)來分析對成長之樣品進行晶體生長方向、表面形貌、薄膜粗糙度、光學性質和微觀結構的表現,來觀察GaN的成長情形。
 實驗發現在氨氣氣氛下升溫,反應溫度為950°C、NH3氣體流量為450sccm、反應時間為60分鐘的條件下,改變生長壓力(50 torr ~ 400 torr)都可以獲得m-plane的氮化鎵。而另一組氮氣氣氛下升溫,反應壓力為50 torr、N2/NH3氣體流量為450/30sccm、反應時間為60分鐘的條件下,改變生長溫度(900°C ~ 1000°C)可以獲得m-plane的氮化鎵薄膜。另外,固定反應溫度在1000°C,所生長出的薄膜為pure m-plane的氮化鎵,但薄膜有嚴重剝落的情況。
 值得注意的是,在氨氣氣氛下升溫反應後,LGO基板內部出現坑坑洞洞的樣貌,與原本LGO基板的樣貌差異頗大;而氮氣氣氛下升溫,反應後LGO基板坑洞的情況大為改善。
Abstract
The study aims at growing nonpolar GaN film on LiGaO2 substrate by chemical vapor deposition (CVD). Metallic gallium and NH3 are the sources of Ga and N. There are two sets of experiment: add NH3 when raising the temperature, and set different reacting pressure at each experiment; add N2 when raising the temperature, and set different reacting temperature at each experiment, while reach the reacting temperature add NH3.
Analyze the reacted samples with X-ray diffraction, scanning electron microscope, electron back-scattered diffraction, atomic force microscope and transmission electron microscopy to know the growing direction, morphology, roughness, optical property, and the microstructure of GaN growing situation.
Under the experimental conditions, add NH3 when raising the temperature and set the reacting pressure in the range of 50 torr ~ 400 torr at 950°C with NH3 flow rate 450sccm for 60 minutes, m-plane GaN can be obtained; setting different reacting temperature(900°C ~ 1000°C) at 50 torr with N2/NH3 flow rate 450/30sccm for 60 minutes can also get m-plane GaN. Besides, the thin film of pure m-plane GaN can be obtained when setting the reacting temperature at 1000°C, but the film peels off seriously.
After reacting under the conditions of the first set experiments, the inside LGO substrate become damaged, pores can be observed easily; and the circumstances of LGO is better in second set experiment.
目次 Table of Contents
摘要.............................................................................................................I
Abstract.....................................................................................................III
表 目錄...................................................................................................VII
圖 目錄.................................................................................................VIII
第一章 序論........................................................................................... 1
 1-1前言..................................................................................................1
 1-2文獻回顧..........................................................................................2
第二章 理論基礎....................................................................................4
 2-1 GaN的結構與性質..........................................................................4
 2-2 LiGaO2的結構與性質.....................................................................5
 2-3研究動機..........................................................................................7
第三章 實驗方法與步驟……..............................................................11
 3-1 實驗方法與步驟...........................................................................11
  3-1-1 基板清洗 ................................................................................11
  3-1-2 CVD生長..................................................................................11
 3-2 實驗裝置.......................................................................................12
  3-2-1 反應氣體輸送裝置.................................................................12
  3-2-2 高溫反應爐.............................................................................13
  3-2-3 真空及排氣裝置.....................................................................13
 3-3 實驗生長參數...............................................................................13
 3-4 量測系統簡介...............................................................................16
  3-4-1 X光繞射分析儀(X-ray diffraction, XRD) ..............................16
  3-4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) ..17
  3-4-3光激發光譜(Photoluminescence spectroscopy, PL)….............18
3-4-4 原子力顯微鏡(Atomic Force Microscope, AFM) .................18
3-4-5 解析型掃描穿透式電子顯微鏡(Transmission Electron
Microscopy, TEM)….............................................................19
第四章 結果與討論..............................................................................20
 4-1 氨氣(NH3)氣氛下升溫,成長溫度對(10-10)GaN的影響...........20
  4-1-1 X光繞射(XRD)分析................................................................21
4-1-2 掃描式電子顯微鏡(SEM)分析...............................................22
4-1-3 電子背向散射繞射(EBSD)分析….........................................23
4-1-4 穿透式電子顯微鏡(TEM)分析...............................................27
4-2 氮氣(N2)氣氛下升溫,成長溫度對(10-10)GaN的影響..............29
  4-2-1 X光繞射(XRD)分析................................................................29
  4-2-2 掃描式電子顯微鏡(SEM)分析...............................................31
  4-2-3 原子力顯微鏡(AFM)分析......................................................32
4-2-4 光激發光譜(PL)分析..............................................................33
4-2-5 穿透式電子顯微鏡(TEM)分析..............................................34
第五章 結論............................................................................................37
參考文獻..................................................................................................39
附錄..........................................................................................................41
參考文獻 References
[1] X. Chen, J. Xu, R.M. Wang, and D. Yu, Adv. Mater. 15 (2003) 5.
[2] C.B. Cao, X. Xiang, and H. Zhu, J. Cryst. Growth. 273 (2005) 375.
[3] T. Kuykendall, P.J. Pauzauskie, Y.F. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P.D. Yang, Nature Materials 3 ( 2004) 524
[4] 施敏 原著,黃調元 譯,“半導體元件物理與製作技術(第二版) ”,交大出版社. (2006) pp.441
[5] S. Strite, M.E. Lin and H. Morkos, Thin Solid Films. 231 (1993) 197.
[6] S. Strite, J. Ruan, Z. Li, N. Manning, A. Salvador, H. Chen, D.J. Smith, W.J. Choyke and H. Morkoc, J. Vac. Sci. Technol. B, 9 (1991) 1924
[7] S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett. 42 (1983) 427.
[8] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48 (1986) 353
[9] S. Nakamura, T. Mukai, and M. Senoh. J. Appl. Phys. 76 (1994) 15.
[10] P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razeghi, Appl. Phys. Lett. 69 (1996) 2116.
[11] S. Duan, X. Teng, P. Han, and D. Lu, J. Cryst. Growth. 195 (1998) 304.
[12] J.J. Lee, Y.S. Park, C.S. Yang, H.S. Kim, K.H. Kim, K.Y. Kang, T.W. Kang, S.H. Park, and J.Y. Lee, J. Cryst. Growth. 213 (2000) 33.
[13] C. Klemenz, H.J. Scheel, J. Cryst. Growth. 211 (2000) 62.
[14] 楊文福, 國立中山大學材料科學研究所碩士論文, 民國九十八年.
[15] M. M.C.Chou, L. Chang, C. Chen, W.F. Yang, C.A. Li, and J.J. Wu, J. Cryst. Growth. 311 (2009) 448.
[16] T. Lei, M. Fanciulli, R.J. Molnar, T.D. Moustakas, R.J. Graham, and J. Scanlon, Appl. Phys. Lett.. 59 (1991) 944.
[17] T. Ishii, Y. Tazoh, and S. Miyazawa, J. Cryst. Growth. 189 (1998) 208.
[18] S. Keller, U.K. Mishra, and S.P. DenBaars, Appl. Phys. Lett.. 73 (1998)10.
[19] C. Liua, Z. Xiea, P. Hana, B. Liua, L. Lia, J. Zhoub, S. Zhoub, L.H. Baic, Z.H. Chenc, R. Zhanga and Y. Zhenga, J. Cryst. Growth. 298 (2007) 228.
[20] M. Marezio, Acta Cryst. 18 (1965) 481. 
[21] K. Xu, P.Z. Deng, J. Xu, G.Q. Zhou, W.J. Liu", and Y.L. Tian, J. Cryst. Growth. 216 (2000) 343.
[22] S. Nanamatsu, K. Doi, and M. Takahashi, Jpn. J. Appl. Phys. 11 (1972) 816.
[23] W.A. Melton, J.I. Pankove, J. Cryst. Growth. 178 (1997)168
[24] J.Lu, L. Haworth, D.I. Westwood, and J.E. Macdonald, J. Appl. Phys. 78 (2001) 1080.
[25] H. Lahrèche, M. Leroux, M. Laügt, M. Vaille, B. Beaumont, and P. Gibart, J. Appl. Phys. 87 (2000) 577.
[26] D. R. Hang, M. M.C. Chou, L. W. Chang, Y. Dikme, M. Heuken, J. Cryst. Growth 311 (2009) 452.
[27] M. M.C. Chou, D. R. Hang, H. Kalisch, R.H. Jansen, Y. Dikme, M. Heuken, and G. P. Yablonskii, J. Appl. Phys. 101 (2007) 103106.
[28] T. Ishii, Y. Tazoh and S. Miyazawa, Jpn. J. Appl. Phys. 36 (1997) 139.
[29] M. Losurdoa, D. Giuvaa, G. Brunoa, S. Huangb, T. H. Kimc, A. S. Brown, J. Cryst. Growth 264 (2004) 139.
[30] A.S. Brown, W.A. Doolittle, S. Kang, J.J. Shen, Z.L. Dai, J. Electronic Materials. 29 (2000) 894.
[31] R. Klauser, P.S. Asoka Kumar, T.J. Chuang, Surface Science 402 (1998) 87.
[32] Y. Tazoh, T. Ishii and S. Miyazawa, Jpn. J. Appl. Phys. 36 (1997) 746.
[33] W. A. Doolittle, S. Kang, T. J. Kropewnicki, S. Stock, P. A. Kohl and A. S. Brown, J. Electronic Materials 27 (1998) L59.

[34] F. Hamdani, A. Botchkarev, W. Kim, H. Morkoc, M. Yeadon, J. M. Gibson, S-C. Y. Tsen, D. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel, and P. Hemenger, Appl. Phys. Lett. 70 (1997) 467.
[35] H. Okumura, S. Misawa, and S. Yoshida, Appl. Phys. Lett. 59 (1991) 1058.
[36] R.G. Wilson, B.L.H. Chai, S.J. Pearton, C.R. Abernathy, F. Ren, and J.M. Zavada, Appl. Phys. Lett. 69 (1996) 25.
[37] A. Kuramata, K. Horino, and K. Domen. FUJITSU Sci. Tech. J. 34 (1998) 191.
[38] H. Morkoc, S. Strite, G.B. Gao , M.E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys. 76 (1994) 1363.
[39] H. Xiao, Introduction to semiconductor manufacturing technology, Prentice Hall. (2001).
[40] D.L. Smith, Thin Films by Chemical Vapor Deposition Principle and Practice. (1995).
[41] 莊達人 編著, “VLSI 製造技術” , 高立圖書有限公司. (2006) pp.150-159.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 107.23.156.199
論文開放下載的時間是 校外不公開

Your IP address is 107.23.156.199
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code