Responsive image
博碩士論文 etd-0808110-224308 詳細資訊
Title page for etd-0808110-224308
論文名稱
Title
氫化物氣相磊晶法生長非極性氮化鎵於LiAlO2與LiGaO2基板之研究
Growth of free-standing non-polar GaN on LiAlO2 and LiGaO2 substrates by hydride vapor phase epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-08-08
關鍵字
Keywords
氫化物氣相磊晶法、非極性氮化鎵
HVPE, nonpolar GaN
統計
Statistics
本論文已被瀏覽 5635 次,被下載 19
The thesis/dissertation has been browsed 5635 times, has been downloaded 19 times.
中文摘要
本文以氫化物氣相磊晶法(HVPE)生長非極性氮化鎵(GaN)於γ-LiAlO2與(010)LiGaO2¬基板,在反應爐中鎵金屬(Gallium) 與氨氣(NH3) 分別作為三族鎵源以及五族氮源,並且搭配氫氣、氮氣為反應過程中之載送氣體(carrier gas),實驗方式為通入反應氣體氯化氫(HCl)與鎵金屬反應成氯化鎵(GaCl),並在存有氫氣、氮氣形成氛圍氣體之下,有效地與氨氣(NH3) 反應形成氮化鎵(GaN)。研究之參數設定上,主要是針對反應壓力、溫度、NH3/HCl氣體之間Ⅴ/Ⅲ比例和生長時間…等。
GaN生長沉積反應在不同基板,因為晶格匹配理論影響下,GaN生長方向會有所異,非極性m-plane GaN [10-10] 方向性於γ-LiAlO2基板上沉積,另在非極性a-plane GaN[11-20] 方向性於LiGaO2¬ (010)基板上。進一步實驗,使用各種儀器進行量測,以SEM、OM、AFM來觀察其表面形貌;以XRD、TEM來得知晶格結構,並可瞭解基板與GaN膜間interface之晶體排列結構及方向,更進一步使用PL量測其光學性質。
Abstract
Nonpolar free-standing GaN wafer were fabricated by using the hydride vapor phaseepitaxy(HVPE) technique on γ-LiAlO2 and (010) LiGaO2 substrates. Metallic gallium, NH3 and ultra-purity nitrogen were used as Ga and N sources. Nitrogen and hydrogen was used as the carrier gases. HCl diluted by nitrogen was designed to pass through near surface of liquid Ga to form GaCl fully. Efficaciously GaN deposition was realized by conducted steady NH3 and GaCl flows to the substrate suface, accommodated by additional hydrogen and nitrogen atmosphere flows. The influence of substrate temperature、pressure、time、and ratio of NH3/HCl (Ⅴ/Ⅲ) on film growth was investigated.
Because of the of the lattice-matched theory, Nonpolar m-plane GaN [10-10] growth on the closely lattice-matched (100) γ-LiAlO2 substrat and a-plane GaN [11-20] will growth on the [010] LiGaO2 substrate. In addition, the surface morphologies were characterized by scanning electron microscopy、Optical Microscope and Atomic force microscopy. Structural properties of the GaN epilayers are investigated by X-ray diffraction and transmission electron microscopy. High resolution transmission electron microscopy shows the in-plane structure. Photoluminescence (PL) spectroscopy was used to study the optical properties.
目次 Table of Contents
目錄
摘要……………………………………………………Ⅰ
Abstract………………………………………………..Ⅱ
目錄…………………………………………………….Ⅲ
圖目錄………………………………………………....Ⅵ
表目錄…………………………………………………Ⅸ

第一章 概論
1-1. 前言……………………………………………….1
第二章 文獻回顧………………………………………4
第三章 氫化物氣相磊晶儀介紹………………………6
3-1. 氫化物氣相磊晶儀(HVPE)…………………6
3-1-1. 反應腔體結構…………………………………6
3-1-2. 反應氣體管線分佈……………………………7
第四章 實驗原理..........................................................9
4-1. 基板種類介紹……………………………………9
4-1-1. 鋁酸鋰 (LAO)………………………………….10
4-1-2. 鎵酸鋰 (LGO)………………………………….12
4-2. HVPE生長GaN原理……………………………14
第五章 實驗方法步驟………………………………15
5-1. 實驗先前準備過程……………………………15
5-1-1. 實驗過程所需工具…………………………15
5-1-2. 基板準備工作………………………………16
5-1-3. HVPE儀器反應前清潔操作…………………17
5-2. HVPE儀器生長GaN操作流程…………………18
5-2-1. GaN生長於LiAlO2基板 ……………19
5-2-1-1. 具有緩衝層之GaN生長步驟……………19
5-2-1-2. 無緩衝層直接生長GaN步驟……………20
5-2-2. GaN生長於LiGaO2基板…………………21
5-3. LiAlO2與LiGaO2基板腐蝕………….………22
第六章 測量儀器介紹……………………………23
6-1. 穿透式電子顯微鏡 (TEM) 分析……………23
6-2. 光激發光譜儀(PL)………………………24
6-3. X光繞射分析儀 (XRD)………………………24
6-4. 場發射掃描式電子顯微鏡(FE-SEM)……25
6-5. 霍爾量測儀 (Hall measurement)…………26
第七章 實驗結果與討論…………………………27
7-1. HVPE儀器結構改裝………………………28
7-2. m-plane GaN生長於LiALO2基板…………31
7-2-1. CVD生長GaN buffer layer……………………43
7-2-2. m-plane GaN之光與電性量測…………………49
7-2-3. m-plane GaN之缺陷密度………………………52
7-2-4. m-plane GaN之TEM量測…………………….53
7-3. a-plane GaN生長於(010)-LiGaO2基板………56
7-3-1. a-plane GaN之光學性質量測………………….66
7-3-2. a-plane GaN之TEM量測……………………67
第八章 結論……………………………………………70
參考文獻………………………………………………72
參考文獻 References
[1] S. H. Ahn, S. H. Lee, K. S. Nahm, E. K. Suh, and M. H. Hong, J. Crystal Growth, 234, 70 (2002).
[2] S. M. Kang, T. I. Shin, D. V. Dihn, J. H. Yang, S.-W. Kim, and D. H. Yoon, J. Crystal Growth, 311, 490 (2009).
[3] S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., 70, 1417 (1997).
[4] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl.
Phys., 76, 1363 (1994).
[5] J. C. Zolper, R. J. Shel, A. G. Baca, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys. Lett., 86, 16 (1996).
[6] T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham, and J. Scanlon, Appl. Phys. Lett., 59, 944 (1991).
[7] T. Wang J. Bai, S. Sakai, and J. K. Ho, Appl. Phys. Lett., 78, 2617 (2001).
[8] R. Langer, J. Simon, V. Ortiz, N. T. Pelekanos, A. Barski, R. Andre, and M. Godlewski, Appl. Phys. Lett., 74, 3827 (1999).
[9] C. Cao, X. Xiang, and H. Zhu, J. Crystal Growth, 273, 375 (2005).
[10] S. Porowski, I. Grzegory, J. Crystal Growth, 178, 168 (1997).
[11] W. A. Melton , J. I. Pankove, J. Crystal Growth, 178, 168 (1997).
[12] L. Liu, J. H. Edgar, Mater. Sci. Eng. R, 37, 61 (2002).
[13] J. W. Gerlach, A. Hofmann, T. Höche, F. Frost, B. Rauschenbach, and G. Benndorf, Appl. Phys. Lett., 88, 011902 (2006).
[14] H. J. Round, Electrical world, 49, 309 (1907).
[15] O. W. Lossev, Telegrafiai Telefonia, 18, 61 (1933).
[16] G. Destriau, J. Chimie Phys., 33, 587 (1936).
[17] N. Holonyak, Jr., and S. F. Bevacqua, Appl. Phys. Lett., 1, 82 (1962).
[18] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, J. of Luminesence, 4, 63 (1971).
[19] H. Amano, N.Sawaki, I. Akasaki, and T. Toyoda, Appl. Phys. Lett., 48, 353 (1986).
[20] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, Jpn. J. Appl. phys., 27, 1156 (1988).
[21] I. Akasaki, H. Amano, Y. Koide, K. Kiramatsu, and N.Sawaki, J. Crystal Growth, 98, 209 (1989).
[22] I. Akasaki, H. Amano, K. Hiramatsu, and N. Sawaki, Inst. Phys. Conf. Ser,. 91, 633 (1988).
[23] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., 28, 2112 (1989).
[24] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., 31, 139 (1992).
[25] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London), 406, 865 (2000).
[26] H. P. Maruska, D. W. Hill, M. C. Chou, J. J. Gallagher, and B. Chai, Opto- Electronics Rev., 11(1), 7 (2003).
[27] M. Akiyama, Y. Kawarada, and K. Kaminishi, J. Crystal Growth, 68, 21 (1984).
[28] S. Duan, X. Teng, P. Han, and Da-Cheng Lu, J. Crystal Growth, 195, 304 (1998).
[29] 楊文福,國立中山大學材料科學所碩士論文,民國九十七年。
[30] 李居安,國立中山大學材料科學所碩士論文,民國九十八年。
[31] J. Shen, S. Johnston, S. Shang, and T. Anderson, J. Crystal Growth, 240, 6 (2002).
[32] O. Kryliouk, M. Reed and T. Dann, Mater. Sci. Eng., B59, 6 (1999).
[33] O. Kryliouk, M. Reed and T. Dann, Mater. Sci. Eng., B66, 26 (1999).
[34] 曹百君,國立中山大學材料科學所碩士論文,民國九十五年。
[35] R. R. Vanfleeta and J. A. Simmons, H. P. Maruska, D. W. Hill, M. M. C. Chou, and B. H. Chai, Appl. Phys. Lett., 83, 1139 (2003).
[36] T. Ishii, Y. Tazoh, and S. Miyazawa, J. Crystal Growth, 186, 409 (1998).
[37] K. Xu, P. Deng, J. Xu, G. Zhou, W. Liu, and Y. Tian, J. Crystal Growth, 216, 343, (2000).
[38] 郭怡麟,國立交通大學電子物理研究所碩士論文,民國九十四年。
[39] 黃惠君,國立中山大學材料科學所博士論文,民國九十七年。
[40] Y. Tazoh, T. Ishii, and S. Mryazawa, Jpn. J. Appl. Phys., 36, 746 (1997).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.150.89
論文開放下載的時間是 校外不公開

Your IP address is 3.17.150.89
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code