Responsive image
博碩士論文 etd-0808111-114140 詳細資訊
Title page for etd-0808111-114140
論文名稱
Title
尺寸分析高普朗特數之熱毛細流對焊接或熔融熔區形狀之影響
Scaling Weld or Melt Pool Shape Affected by Thermocapillary Convection with High Prandtl number
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-08
繳交日期
Date of Submission
2011-08-08
關鍵字
Keywords
尺寸分析、熔融、焊接、相變化、表面張力梯度、馬拉哥尼流、熱毛細流
thermocapillary convection, surface tension gradient, phase change, Marangoni convection, welding, scale analysis, melting
統計
Statistics
本論文已被瀏覽 5650 次,被下載 616
The thesis/dissertation has been browsed 5650 times, has been downloaded 616 times.
中文摘要
本研究以尺寸分析成功預測金屬或合金的熔化與焊接過程中,熔池形狀及熱毛細流。熔池形狀及輸送變數與熔融區的材料強度及特性息息相關。本研究假設表面張力係數為負值,意指會產生由中心向外的表面流。高Prandtl number代表熱邊界層小於動量邊界層。Marangoni number通常很高,故尺寸分析的範圍可分為︰熱區、中間區、冷區。其中冷區又分固-液交界面及固體區。結果發現冷、熱角落區域的最大及次大表面速度、最高溫度、熔池寬度、深度可以分別表示為工作變數,或Marangoni、Prandtl、Peclet、Stefan及雷射能量數的函數。尺寸分析的結果發現與實驗數據一致,且與尺寸分析方程式之不同組合相吻合。
Abstract
The molten pool shape and thermocapillary convection during melting or welding of metals or alloys are self-consistently predicted from scale analysis. Determination of the molten pool shape and transport variables is crucial due to its close relationship with the strength and properties of the fusion zone. In this work, surface tension coefficient is considered to be negative, indicating an outward surface flow, whereas high Prandtl number represents a thinner thickness of the thermal boundary layer than that of momentum boundary layer. Since Marangoni number is usually very high, the domain of scaling is divided into the hot, intermediate and cold corner regions, boundary layers on the solid-liquid interface and ahead of the melting front. The results find that the width and depth of the pool, peak and secondary surface velocity, and maximum temperatures in the hot and cold corner regions can be explicitly and separately determined as functions of working variables or Marangoni, Prandtl, Peclet, Stefan, and beam power numbers. The scaled results agree with numerical data, different combinations among scaled equations, and available experimental data.
目次 Table of Contents
謝誌 I
目錄 II
圖目錄 IV
符號說明 VI
中文摘要 1
英文摘要 2
第一章 緒論 3
1.1前言 3
1.2研究目的 7
1.3本文架構 8
第二章 系統模型之假設與理論 9
2.1系統模型 9
2.2系統假設與理論分析 11
第三章 結果與討論 13
3.1尺寸分析 13
3.2依據工作變數得到的輸送變數表示式 21
3.3尺寸分析結果與討論 23
第四章 結論 44
參考文獻 45
參考文獻 References
[1] Kou, S., 1987, Welding Metallurgy. Wiley.
[2] DebRoy, T., and David, S. A., 1995,“Physical Processes in Fusion Welding,” Rev. Modern Phys.,67, pp. 85-112.
[3] Chen, M. M., 1987,“Thermocapillary Convection in Materials Processing,” in Interdisciplinary Issues in Materials Processing and Manufacturing, edited by S. K. Samanta, R. Komanduri, R. McMeeking, M. M. Chen, and A. Tseng, ASME, New York, pp. 541-558.
[4] Amberg, G., and Shiomi, J, 2005, “Thermocapillary Flow and Phase Change in Some Widespread Materials Processes,” Fluid Dyn.Mater.Proc., 1, pp. 81-95.
[5] Takasu, T., and Toguri, J. M., 1998, “Pyrometallurgical Significance of Marangoni Flow: Mechanism and Contributions to Processing,” Phil. Trans. R. Soc. Lond. A., 356, pp. 967-980.
[6] Sen, A. K., and Davis, S. H., 1982,“Steady Thermocapillary Flows in Two-Dimensional Slots,” J. Fluid Mech.,121, pp. 163-186.
[7] Ostrach, S., 1982, “Low-Gravity Fluid Flows,” Ann. Rev. Fluid Mech.,14, pp. 313-345.
[8] Kanouff, M., and Greif, R., 1994, "Oscillations in Thermocapillary Convection in a Square Cavity," Int. J. Heat Mass Transfer, 37, pp. 885-892.
[9] Voth, T. E., Liu, A., and Bergman, T. L., 1992, “Thermocapillary Convection during Solid-Liquid Phase Change,” ASME J. Heat Transfer, 114, pp. 1068-1070.
[10] Chakraborty, N., Chatterjee, D., and Chakraborty, S., 2004, “Modeling of Turbulent Transport in Laser Surface Alloying,” Numer. Heat Transfer, Part A, 46, pp. 1009-1032.
[11] Sahoo, P., DebRoy, T., and McNallan, M. J., 1988, “Surface Tension of Binary Metal-Surface Active Solute Systems under Conditions Relevant to Welding Metallurgy,” Metall. Trans., 19B, pp. 483-491.
[12] Oreper, G. M., Eagar, T. W., and Szekely, J., 1983,"Convection in Arc Weld Pools," Weld. J., 62, pp.307-s-312-s.
[13] Kou, S., and Wang, Y. H., 1986,"Weld Pool Convection and Its Effect," Weld. J., 65, pp.63-s-70-s.
[14] Zacharia, T., David, S. A., Vitek, J. M., and DebRoy, T., 1989, "Weld Pool Development during GTA and Laser Beam Welding of Type 304 Stainless Steel, Part I-Theoretical Analysis," Weld. J., 68, pp.499-s to 509-s.
[15] Wei, P. S., Ting, C. N., Yeh, J. S., DebRoy, T., Chung, F. K., and Yan, G. H., 2009, “Origin of Wavy Weld Boundary,” J. Appl. Phys., 105, 053508-1 to 8.
[16] Limmaneevichitr, C., and Kou, S., 2000, “Experiments to Simulate Effect of Marangoni Convection on Weld Pool Shape,” Weld. J., 79, pp. 231-s-237-s.
[17] Robert, A., and DebRoy, T., 2001, “Geometry of Laser Spot Welds from Dimensionless Numbers,” Metall. Mater. Trans. B, 32, pp. 941-947.
[18] Bejan, A. 1984 Convection Heat Transfer, Wiley.
[19] Wei, P. S., Chang, C. Y., and Chen, C. T., 1996,“Surface Ripple in Electron-Beam Welding Solidification,” ASME J. Heat Transfer,118, pp. 960-969.
[20] Wei, P. S., 2011, “Thermal Science of Weld Bead Defects: A Review,” in Special Issue on Advanced Thermal Processing, ASME J. Heat Transfer, 133, 031005.
[21] Wei, P. S., Chuang, K.C., Ku, J. S., DebRoy, T., and Chen, K. H., 2011, “Mechanisms of Spiking and Humping in Keyhole Welding,” (accepted for publication in IEEE Trans. Compon. Packag. Technol.).
[22] Cowley, S. J., and Davis, S. H., 1983,“Viscous Thermocapillary Convection at High Marangoni Number,” J. Fluid Mech.,135, pp. 175-188.
[23] Zebib, A., Homsy, G. M., and Meiburg, E., 1985, “High Marangoni Number Convection in a Square Cavity,” Phys. Fluids, 28, pp. 3467-3476.
[24] Rivas, D., and Ostrach, S., 1992,"Scaling of Low-Prandtl-number Thermocapillary Flows," Int. J. Heat Mass Transfer, 35, pp.1469-1479.
[25] Chakraborty, N., and Chakraborty, S., 2007, “Thermal Transport Regimes and Generalized Regime Diagram for High Energy Surface Melting Processes,” Metall. Mater. Trans. B, 38, pp. 143-147.
[26] Chan, C. L., Chen, M. M., and Mazumder, J., 1988, “Asymptotic Solution for Thermocapillary Flow at High and Low Prandtl Numbers due to Concentrated Surface Heating,” ASME J. Heat Transfer, 110, pp. 140-146.
[27] Kamotani, Y., Chang, A., and Ostrach, S., 1996, “Effects of Heating Mode on Steady Axisymmetric Thermocapillary Flows in Microgravity,” ASME J. Heat Transfer,118, pp. 191-197.
[28] Kamotani, Y., and Ostrach, S., 1998, “Theoretical Analysis of Thermocapillary Flow in Cylindrical Columns of High Prandtl Number Fluids,” ASME J. Heat Transfer,120, pp. 758-764.
[29] Chung, F. K., and Wei, P. S., 1999, "Mass, Momentum, and Energy Transport in a Molten Pool When Welding Dissimilar Metals," ASME J. Heat Transfer, 121, pp. 451-461.
[30] Wei, P. S., Lin, C. L., and Ting, C. N., 2011,“Unsteady Thermocapillary Convection in Molten or Weld Pool,” (acceptedby ASME J. Manufact. Sci. Eng.)
[31] Wei, P. S., Yeh, J. S., Ting, C. N., DebRoy, T., Chung, F. K., and Lin, C. L., 2009, ”The Effects of Prandtl Number on Wavy Weld Boundary,“ Int. J. Heat Mass Transfer, 52, pp. 3790-3798.
[32] Wei, P. S., Kuo, Y. K., and Ku, J. S., 2000, "Fusion Zone Shapes in Electron- Beam Welding Dissimilar Metals," ASME J. Heat Transfer, 122, pp. 626-631.
[33] Fuerschbach, P. W., 1996, “Measurement and Prediction of Energy Transfer Efficiency in Laser Beam Welding,” Weld. J.,75, 24-s-34-s.
[34] Ion, J. C., Shercliff, H. R., and Ashby, M. F., 1992,“Diagrams for Laser Materials Processing,” Acta Metall. Mater.,40, pp. 1539-1551.
[35] Taniguchi, N., Ikeda, M., Miyamoto, I., and Miyazaki, T., 1989, Energy-Beam Processing of Materials, Clarendon Press, Oxford.
[36] Hashimoto, T., and Matsuda, F., 1965, “Effect of Welding Variables and Materials upon Bead Shape in Electron-Beam Welding,” Trans. National Research Institute for Metals,7, pp. 22-35.
[37] Christensen, N., Davies, V. de L., and Gjermundsen, K., 1965, "Distribution of Temperatures in Arc Welding," British Weld. J., 12, pp.54-75.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code