Responsive image
博碩士論文 etd-0808111-131312 詳細資訊
Title page for etd-0808111-131312
論文名稱
Title
極低碳鋼與雙相鋼之熱浸鍍鋅鐵鋁阻障層成長動力學研究
Growth Kinetics of the Fe-Al Inhibition Layer in Hot-dip Galvanizing of Interstitial-free and Dual-phase Steels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-17
繳交日期
Date of Submission
2011-08-08
關鍵字
Keywords
表面氧化物、極低碳鋼、成核、鐵鋁層、雙相鋼、擴散成長、熱浸鍍鋅
nucleation, surface oxides, FeAl inhibition layer, diffusion growth, interstital-free steels, hot-dip galvanizing, dual-phase steels
統計
Statistics
本論文已被瀏覽 5653 次,被下載 1
The thesis/dissertation has been browsed 5653 times, has been downloaded 1 times.
中文摘要
本研究主要針對極低碳鋼(IF鋼)及雙相鋼,分析退火後表面氧化物的組成、分佈及其對後續熱浸鍍鋅鐵鋁阻障層形成的影響。IF鋼及雙相鋼分別在露點-70 oC 與0 oC的保護性氣氛下,在800 oC退火1-200秒,再浸入鋁含量0.12-0.18 wt%的鋅浴中浸鍍0-20秒。本研究使用掃瞄式電子顯微鏡、歐傑能譜顯微鏡、X光光電子能譜儀、感應耦合電漿原子發射光譜儀等設備,分析氧化層與鐵鋁阻障層的化學成分和組成原子的化學價態。研究結果顯示,IF鋼表面在退火階段形成的氧化物以MnAl2O4尖晶石氧化物為主,氧化物平均厚度約為5~15 nm,退火時間對氧化物平均厚度影響不大;雙相鋼表面則以MnO氧化物為主,主要分佈於晶界上。隨著退火時間增加,氧化物平均厚度由 20 nm(10 s)迅速增加至110 nm(200 s)。鐵鋁層的成長可分為初期的成核階段成長以及後續的擴散控制成長。兩種鋼材鐵鋁層的成核時間均為0.1秒左右,鐵鋁層厚度則約為20 nm。對IF鋼而言,在鋅浴鋁含量為0.12 wt%時,成核階段將介面的鋁消耗殆盡,導致鐵鋁層成長稍有延遲,且速率控制機構為鋁在鋅浴中的擴散。當鋅浴鋁含量升至0.14 wt%以上時,前述成長延遲現象不再出現,且鐵鋁層成長的速率控制機構轉為鐵在鐵鋁層中的固態擴散。對雙相鋼而言,鋅浴鋁含量在0.14 wt%以上時,其成長機構與IF鋼類似,但是鐵在鐵鋁層中的擴散以晶界擴散為主。此外,在MnO氧化物富集的區域,鐵鋁層的成長明顯延遲,可能是該處鋁在還原MnO氧化物時大量被消耗所致。
Abstract
This study is mainly aimed at interstital-free and dual-phase steels, analyzing the compositions and distribution of selective surface oxides after annealing and then to know the influence of these oxidation for the formation of FeAl inhibition layer in hot-dip galvanizing. Interstital-free and dual-phase steels were first annealed at 800 oC for 1-200 s in a 10% H2-N2 protected atmosphere of -70 oC and 0 oC dew point respectively and then dipped in zinc bath with Al content 0.12-0.18 wt% for 0-20 s. Using this combined SEM, Auger electron spectroscopy(AES), X-ray photoelectron spectroscopy(XPS) and ICP-AES etc. instruments, it is shown that the MnAl2O4 spinels were the major oxidation on the surface of IF steel after annealing. The average oxidation thickness was about 5-15 nm. Annealing times has little effect on the thickness. On the other hand, MnO were observed on DP steel surface after anneaing. The MnO paticles mainly distributed at the grain boundaries ,and the average oxdaiton thickness increase rapidly from 20 nm(10 s) to 110 nm(200 s) with annealing times. The growth of the FeAl inhibition layer can separate to nucleation in initial stage and diffusion growth later. The Fe2Al5 nucleation times were all about 0.1 s in both steels , and average thicknesses were approximately 20 nm. For IF steels , Al uptake in the zinc bath and steel interface was depleted in nucleation stage with 0.12 wt% Al content, so that delayed the growth of Fe2Al5, and the rate determining step was the diffusion of Al in zinc bath. When Al content raise up to 0.14 wt%, the phenomenon of growth delay was not happened, and the rate determining step of Fe2Al5 growth changed to the solid-state diffusion of Fe in Fe2Al5. For DP steels, when Al content up to 0.14 wt%, the growth mechanism was similar to IF steels, but the rate determining step of Fe2Al5 growth was mainly in the grain boundary diffusion of Fe in Fe2Al5. Moreover, where the MnO paticles was rich could obviously observe the delay of Fe2Al5 growth. It was probably because of consuming a great deal of Al to reduce the MnO oxides.
目次 Table of Contents
中文摘要 ..................................................................................................... I
英文摘要 .................................................................................................... II
總目錄 ...................................................................................................... IV
圖目錄 ..................................................................................................... VII
表目錄 ................................................................................................... XIII
第一章、前言 ............................................................................................ 1
第二章、文獻回顧 .................................................................................... 3
2.1熱浸鍍鋅的發展 .......................................................................... 3
2.1.1熱浸鍍鋅的原理 ............................................................... 3
2.1.2連續式熱浸鍍鋅製程 ....................................................... 4
2.1.3熱浸鍍鋅鋼材的發展與現況 ........................................... 6
2.2表面選擇性氧化物 ...................................................................... 9
2.2.1氧化反應熱力學計算 ....................................................... 9
2.2.2氧化物種類 ..................................................................... 12
2.3鐵鋅相成長動力學 .................................................................... 14
2.4鐵鋁層成長動力學 .................................................................... 18
2.4.1鐵鋁層成核成長[26-27] ..................................................... 20
2.4.1.1達臨界狀態的成核數 ....................................... 20
2.4.1.2鋁含量的消耗速率 ........................................... 22
2.4.1.3成核階段的影響 ............................................... 23
2.4.2 鐵鋁層擴散成長 ............................................................ 25
2.4.2.1鋁在鋅浴中擴散[26] ........................................... 25
2.4.2.2鐵在鐵鋁層中擴散[31] ....................................... 27
2.5分析技術原理 ............................................................................ 31
2.5.1感應耦合電漿原子發射光譜儀分析 ............................. 31
2.5.2 X光光電子能譜儀分析 .................................................. 34
2.5.3歐傑電子能譜儀分析 ..................................................... 36
第三章、實驗方法 .................................................................................. 37
3.1試片準備 .................................................................................... 37
3.2 X光光電子能譜儀(XPS)分析 ................................................... 41
3.3掃描式電子顯微鏡(SEM)分析 ................................................. 42
3.4掃描式歐傑電子能譜儀(SAM)分析 ........................................ 42
3.5感應耦合電漿原子發射光譜儀(ICP-AES)分析 ...................... 43
第四章、實驗結果與討論 ...................................................................... 46
4.1表面氧化物分析 ........................................................................ 46
4.1.1 IF鋼 ................................................................................. 46
4.1.2雙相鋼 ............................................................................. 54
4.2熱浸鍍鋅鐵鋁層分析與觀察 .................................................... 63
4.2.1 IF鋼鐵鋁層分析 ............................................................. 63
4.2.1.1 SEM與AES分析 .................................................. 63
4.2.1.2 XPS分析 .............................................................. 69
4.2.1.3 ICP-AES分析 ...................................................... 72
4.2.1.4討論 ...................................................................... 74
4.2.2雙相鋼鐵鋁層分析 ......................................................... 76
4.2.2.1 SEM與AES分析 .................................................. 76
4.2.2.2 XPS分析 .............................................................. 82
4.2.2.3 ICP-AES分析 ...................................................... 84
4.2.2.4討論 ...................................................................... 87
第五章、結論 .......................................................................................... 90
第六章、參考文獻 .................................................................................. 91
參考文獻 References
1. K. Kyono, T. Shimizu, K. Sakata, C. Kato, Proceedings of the Galvatech '01: 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet,
Brussels, Belgium, (2001), pp. 121.
2. 王宏平,“合金元素對雙相鋼表面選擇性氧化與鍍鋅性的影響”,國立中山大學材料與光電科學學系碩士學位論文,(2008)。
3. Y. Morimoto, E. McDevitt, M. Meshii, ISIJ International, 37, 906 (1997).
4. 梁弘逸,“熱浸鍍鋅鋼材鐵鋁阻障層形成機構研究”,國立中山大學材料與光電科學學系碩士學位論文,(2010)。
5. A.R. Marder, Progress in Materials Science, 45, 191 (2000).
6. Q.H. Zhang, L. Chen, W.M. Mao, W.Q. Duan, S.G. Shi, Heat Treatment of Metals, 34, 78 (2009).
7. J.S. Yu, J.X. Zhang, J.S. Wu, Physical Testing, 41, 7 (2005).
8. S. Cao, Shanghai Metals, 20, 3 (1998).
9. X.D. Hao, D.M. Cheng, Q.F. Zhang, China Metallury, 16, 5 (2006).
10. H.T. Jiang, D. Tang, Z. L. Mi, Journal of Iron and Steel Research, 19, 1 (2007).
11. D. Huin, P. Flauder, J.B. Leblond, Oxidation of Metals, 64, 131 (2005).
12. R.T. DeHoff:Thermodynamics in materials science, 2nd ed., (2006), pp. 326.
13. D. R. Gaskell著,材料熱力學,蔡希杰譯,台北偉明圖書公司,(2003),pp. 433。
14. D. Loison, D. Huin, V. Lanteri, J.P. Servais, R. Cremer, Proceedings of the Galvatech '01: 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Brussels, Belgium, (2001), pp. 203.
15. P. Drillet, Z. Zermout, D. bouleau, J.M. Mataigne, Proceedings of the Galvatech '01: 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Brussels, Belgium, (2001), pp. 195.
16. P. Drillet, Z. Zermont, D. Bouleau, J. Mataigne, S. Claessens, Proceedings of the Galvatech '04: 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, (2004), pp. 1123.
17. X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim, Y.W. Kim, Scripta Materialia, 59, 290 (2008).
18. C.E. Jordan, A.R. Marder, J. Mater. Sci., 32, 5593 (1997).
19. H.K. Kim and K.N. Tu, Physical Review B, 53, 16207 (1996).
20. L. Allegra, R.G. Hart and H.E. Townsend, Metall. Mater. Trans. A, 14, 401 (1983).
21. F.J.J. van Loo, Progress in Solid State Chemistry, 20, 47 (1990).
22. M. Isobe, CAMP-ISIJ, 5, 1629 (1992).
23. M. Guttmann, Y. Lepretre, A. Aubry, M.J. Roch, T. Moreau, P. Drillet, J.M. Mataigne, H. Baudin, Proceedings of the Galvatech '95: 3rd International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, (1995), pp. 295.
24. M. Guttmann, Materials Science Forum, 155-156, 527 (1994).
25. M.L.Giorgi and J.B.Guillot, J. Mater. Sci., 40, 2263 (2005).
26. N.Y. Tang, Metall. Mater. Trans. A, 26A, 1699 (1995).
27. G.K. Mandel, R. Balasubramaniam, S.P. Mehrotra, Metall. Mater. Trans. A, 40A, 637 (2009).
28. W.A. Miller and G.A. Chadwick, Acta Metallurgica, 15, 607 (1967).
29. P. Toussaint, L. Segers, R. Winand and M. Dubois, ISIJ International, 38, 985 (1998).
30. C. Zener, J. of Appl. Phys., 20, 950 (1949).
31. L. Chen, R. Fourmentin and J.R. Mc Dermid, Metall. Mater. Trans. A, 39A, 2128 (2008).
32. J.M. Perrow, W.W. Smeltzer, and J.D. Embury, Acta Metallurgica, 16, 1209 (1968).
33. C.B. Boss, K.J. Fredeen:Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry, 2nd ed., (1997).
34. D.A. Skoog, F.J. Hooler, S. R. Crouch:Principles of Instrumental Analysis, 6th ed., (2007), pp. 254.
35. 林柏廷,“以感應耦合電漿原子發射光譜儀檢測中藥重金屬含量之研究”,朝陽科技大學應用化學系,(2002),pp. 11。
36. 王建琪、吳文輝、馮大明,“電子能譜學(XPS/XAES/UPS)引論”,北京國防工業出版社,(1992),pp. 251。
37. J.F. Watts, J. Wolstenholme:An Introduction to Surface Analysis by XPS and AES, (2003).
38. M. Chigane, M. Ishikawa, J. Electrochem. Soc., 147, 2246 (2000).
39. B. R. Strohmeier and D. M. Hercules, J. Phy. Chem., 88, 4922 (1984).
40. X. Vanden Eynde, J. P. Servais and M. Lambergts, Surface and Interface Analysis, 35, 1004 (2003).
41. S. Swaminathan and M. Spiegel, Appl. Surf. Sci., 253, 4607 (2007).
42. F. Luther, A. Dimyati, D. Beste, W. Bleck, J. Mayer, Adv. Eng. Mater., 9, 274 (2007).
43. X. Vanden Eynde, J.P. Servais and M. Lamberigts, Surface and Interface Analysis, 33, 322 (2002).
44. 林俊宏,“未發表之實驗數據”,中山大學材料與光電科學學系。
45. M. Saito, Y. Uchida, T. Kittaka, Y. Hirose, Y. Hisamatsu, Tetsu-to-Hagane, 77, 947 (1991).
46. Y.H. Liu, N.Y. Tang, Proceedings of the Galvatech '04: 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, (2004), pp. 1155.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.46.36
論文開放下載的時間是 校外不公開

Your IP address is 18.191.46.36
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code