Responsive image
博碩士論文 etd-0808111-162539 詳細資訊
Title page for etd-0808111-162539
論文名稱
Title
應用於攜帶式生醫系統之低功率半回合RC5加解密演算法之電路與適用於FPW-based生醫感測器之頻移讀取電路
Low Power Half-Run RC5 Cipher Circuit for Portable Biomedical Device and A Frequency-Shift Readout Circuit for FPW-Based Biosensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-28
繳交日期
Date of Submission
2011-08-08
關鍵字
Keywords
彎曲平板波、頻移讀取電路、生醫系統、低功率
frequency-shift readout system, RC5, flexural plate wave, biomedical system, low power, ZigBee
統計
Statistics
本論文已被瀏覽 5658 次,被下載 616
The thesis/dissertation has been browsed 5658 times, has been downloaded 616 times.
中文摘要
此篇論文包含兩個主題,第一個主題是應用於攜帶式生醫系統之低功率半回合(Half-Run) RC5加解密演算法;第二個主題是適用於FPW-based生醫感測器之頻移讀取電路。

在第一個研究主題中,使用了半回合(Half-Run)硬體實現低功耗RC5加解密晶片,並且為了縮小面積,利用四個多工器,以使加密與解密之硬體共用,其中只需一個32位元寬度之加減法器(adder/subtractor)、一個32位元寬度之雙向位移器(Bidirectional barrel shifter)以及32個互斥或閘(XOR)。除此之外,本設計鑰匙擴展運算與加解密運算之時脈可分開運作,當鑰匙計算完存放於暫存器後便可將鑰匙計算之時脈關掉以節省功率消耗,故適用於需要低功\\\耗低成本之可攜式生醫無線通訊系統。

在第二個研究主題中,本論文提出一頻移讀取電路,主要目的為偵測彎曲平板波(FPW, Flexural Plate-Wave)感測晶片上蛋白質濃度之差異。由於FPW會因乘載不同濃度的蛋白質而改變其中心頻率,故本論文提出之系統,係利用一個計數器、數位類比轉換器(DAC)、電壓頻率轉換器(VFC)、兩個峰值偵測器、兩個暫存器及一個減法器,最後經由查表,即可讀取中心頻率移動之量。比起目前醫療機構所使用之傳統檢測方法,本論文實現之電路不但節省功率消耗及成本,並大幅降低檢測時間。
Abstract
This thesis consists of two topics. We proposed a low power half-run RC5 cipher for portable biomedical devices in the first part of this thesis. The second topic is to realize a frequency-shift readout system for FPW-based biosensors.
In the first topic, a half-round low-power RC5 encryption structure is proposed. To reduce hardware cost as well as power consumption, the proposed RC5 cipher adopts a resource-sharing approach, where only one adder/subtractor, one bi-directional barrel shifter, and one XOR with 32-bit bus width are used to carry out the entire design. Two data paths are switched through the combination of four multiplexers in the encryption/decryption procedure. For the sake of power reduction, the clock in the key expansion can be turned off when all subkeys are generated.
In the second topic, an IgE antigen concentration measurement system using a frequency-shift readout method for a two-port FPW (flexural plate-wave) allergy biosensor is presented. The proposed frequency-shift readout method adopts a peak detecting scheme to detect the resonant frequency. A linear frequency generator, a pair of peak detectors, two registers, and an subtractor are only needed in our system. According to the characteristics of the FPW allergy biosensor, the frequency sweep range is limited in a range of 2 MHz to 4 MHz. The precision of the measured frequency is proved to the 4.2 kHz/mV, which is for better than that of existing designs.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
圖次 vii
表次 x
第一章 概論 1
1.1 研究動機 1
1.1.1 生醫無線通訊之加解密演算法 1
1.1.2 彎曲平板波IgE 過敏原偵測器讀取電路系統 4
1.2 相關技術與文獻探討 6
1.2.1 RC5加解密演算法 6
1.2.2 適用於IgE抗體濃度偵測之系統 8
1.3 論文架構 10
第二章 應用於攜帶式生醫系統之低功率半回合RC5加解密演算法電路 11
2.1 簡介 11
2.1.1 RC5 加解密之演算法分析 12
2.1.2 RC5 鑰匙擴展演算法分析 16
2.2 電路架構 17
2.3 電路設計 19
2.3.1 半回合RC5加解密演算法電路 19
2.3.2 RC5 鑰匙擴展電路 21
2.3.3 雙向循環位移器 22
2.4 電路模擬與晶片實作 23
2.4.1 電路模擬與分析 23
2.4.2 電路佈局圖 25
2.4.3 晶片實作 26
2.5 晶片量測 26
2.5.1 晶片量測與結果 26
2.5.2 效能比較 30
2.5.3 討論與檢討 31
第三章 適用於FPW-based生醫感測器之頻移讀取電路 33
3.1 簡介 33
3.1.1 FPW 頻移特性 33
3.2 電路架構 35
3.3 系統驗證 37
3.3.1 驗證波形 39
3.4 電路設計 41
3.4.1 數位類比轉換器 42
3.4.2 電壓頻率轉換器 43
3.4.3 峰值偵測器 45
3.4.4 數位控制電路 47
3.5 電路模擬與晶片實作 48
3.5.1 電路模擬與分析 48
3.5.2 晶片實作 53
3.6 晶片量測結果與討論 53
3.6.1 晶片量測結果與分析 53
3.6.2 預計規格與實測結果 57
3.6.3 討論與檢討 58
第四章 結論與未來工作 59
參考文獻 60
參考文獻 References
[1] C.-C. Wang, C.-C. Huang, J.-M. Huang, C.-Y. Chang, and C.-P. Li, “ZigBee 868/915 MHz transceiver for wireless personal area network,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 7, pp. 936-939, Jul. 2008.
[2] H. Cho, H. Jang, and Y. Baek, “Practical localization system for consumer devices using ZigBee networks,” IEEE Trans. on Consumer Electronics, vol. 56, no. 3, pp. 1562-1569, Aug. 2010.
[3] K. Gill, S.-H. Yang, F. Yao, and X. Lu, “A ZigBee-based home automation system,” IEEE Trans. on Consumer Electronics, vol. 55, no, 2, pp. 422-430, May 2009.
[4] W. Stallings, Cyptography and network security principles and practice, 2nd ed. Prentice Hall, 1999.
[5] J. Daemen, S. Borg, and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard. Springer-Verlag, 2002.
[6] R. L. Rivest, “The RC5 encryption algorithm,” in Proc. 1994 Leuven Workshop on Fast Software Encryption, vol. 1008, pp. 86-96, Springer-Verlag, 1995.
[7] “Wireless transport layer security, WTLS” WAP Technical Specifications Version 2.0, 2002.
[8] C. Fan, J. Tan, and P. Zheng, “Low-speed wireless networks research and simulation based on RC5,” in Proc. 5th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-4, Sep. 2009.
[9] K. M. Rudrappa, H. D. Maheshappa, C. Puttamadappa, K. Somashekar, and K. S. V. Prasad, “Implementing RC5 protocol for remote control applications,” in Proc. 2009 International Conference on Control, Automation, Communication and Energy Conservation, pp. 1-6, Jun. 2009.
[10] A. Schubert and W. Anheier, “Efficient VLSI implementation of modern symmetric block ciphers,” in Proc. 6th IEEE International Conference on Electronics, Circuits and Systems, vol. 2, pp. 757-760, Sep. 1999.
[11] N. Sklavos, C. Machas, and O. Koufopavlou, “Area optimized architecture and VLSI implementation of RC5 encryption algorithm,” in Proc. 10th IEEE International Conference on Electronics, Circuits and Systems, vol. 1, pp. 172-175, Dec. 2003.
[12] H. Li, J. Li, and J. Yang, “An efficient and reconfigurable architecture for RC5”, in Proc. Canadian Conference on Electrical and Computer Engineering, pp. 1648-1651, May 2005.
[13] O. Elkeelany and S. Nimmagadda, “Effect of loop-unrolling in hardware reconfigurable implementations of RC5-192 encryption algorithm,” in Proc. IEEE Region 5 Conference, pp. 1-4, Apr. 2008.
[14] K. Hyejung, K. Yongsang, and Y. Hoi-Jun, “A low energy bio sensor node processor for continuous healthcare monitoring system,” in Proc. IEEE Asian Solid-State Circuits Conference, pp. 317-320, Nov. 2008.
[15] http://health.ntuh.gov.tw/health/new/1026.htm.

[16] H. J. Gould, B. J. Sutton, A. J. Beavil, R. L. Beavil, N. McCloskey, H.A. Coker, D. Fear, and L. Smurthwaite, “The biology of IgE and the basis of allergic disease,” Annual Review of Immunology, vol. 21, pp. 579-628, Apr. 2003.
[17] R. M. Lequin, “Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA),” Clinical Chemistry, vol. 51, no. 12, pp. 2415-2418, Sep. 2005.
[18] X. Su and J. Zhang, “Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance for human IgE quantification,” Sensors and Actuators B: Chemical, vol. 100, no. 3, pp. 309-314, Sep. 2004.
[19] X. Su, F. T. Chew, and S. F. Li, “Piezoelectric quartz crystal based labelfree analysis for allergy disease,” Biosensors & Bioelectronics, vol. 15, no. 11-12, pp. 629-39, May 2000.
[20] W.-Y. Chang, P.-H. Sung, C.-H. Chu, C.-J. Shih, and Y.-C. Lin, “Phase detection of the two-port FPW sensor for biosensing,” IEEE Sensor Journal, vol. 8, no. 5, pp. 501-507, May 2008.
[21] W.-Y. Chang, Y.-C. Lin, W.-W. Ke, H.-L. Ning, and P.-H. Sung, “Phase detection of the two-port FPW sensor for biosensing,” in Proc. 2005 27th Annual Inter. Conf. of the Engineering in Medicine and Biology Society, pp. 538-541, Jan. 2006.
[22] D. Wobschall, “A frequency shift dielectric soil moisture sensor,” IEEE Trans. on Geoscience Electronics, vol. GE-16, no. 2, pp. 112-118, Apr. 1978.
[23] 李志琛,“高敏感度CMOS電壓對頻率轉換器與靜態式記憶體用高速電流式感測放大器,” 國立中山大學電機工程學系碩士班碩士論文, 1993.
[24] A. Hassibi and T. H. Lee, “A programmable 0.18-um CMOS electrochemical sensor microarray for biomolecular detection,” IEEE Sensor Journal, vol. 6, no. 6, pp. 1380-1388, Dec. 2006.
[25] J. Zhang, N. Trombly, and A. Mason, “A low noise readout circuit for integrated electrochemical biosensor arrays,” in Proc. 2004 IEEE Sensors, vol. 1, pp. 36-39, Oct. 2004.
[26] M. J. van der Werff, Y. J. Yuan, E. R. Hirst, W. L. Xu, H. Chen, and J. E. Bronlund, “Quartz crystal microbalance induced bond rupture sensing for medical diagnostics,” IEEE Sensor Journal, vol. 7, no. 5, pp. 762-769, May 2007.
[27] I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sensors and Actuators B: Chemical, vol. 132, no. 1, pp. 340-348, May 2008.
[28] 李宗哲,“小變化之1MHz時脈產生電路,高敏感度線性電壓對頻率轉換器,與適用於NTSC同步分離之高PSR偏壓電路,” 國立中山大學電機工程學系碩士班碩士論文, 2004.
[29] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill Book co. press Preview edition, 2000, pp. 938-947.
[30] I.-Yu. Huang and M.-C Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM Technologies,” Sensors and Actuators B-Chemical, vol. 132, 2, pp. 340-348, May 2008.
[31] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York: Oxford University Press, 2002.
[32] Y.-R. Lin, C.-H. Hsu and C.-C. Wang, “Low power RC5 cipher for ZigBee portable biomedical systems”, in Proc. 2011 IEEE International Conference on Consumer Electronic, pp. 615-616, Jan. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code