Responsive image
博碩士論文 etd-0808111-214706 詳細資訊
Title page for etd-0808111-214706
論文名稱
Title
在 IEEE 802.16j WiMAX 網路上動態的區域頻寬協調排程機制
Dynamic Zone-based Bandwidth-Negotiation Scheduling for IEEE 802.16j WiMAX Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-02
繳交日期
Date of Submission
2011-08-08
關鍵字
Keywords
馬可夫鏈、IEEE 802.16j、頻寬協調、服務品質、中繼站
802.16j, Relay Station, Quality of Services, Markov chain, Negotiation
統計
Statistics
本論文已被瀏覽 5802 次,被下載 1016
The thesis/dissertation has been browsed 5802 times, has been downloaded 1016 times.
中文摘要
IEEE 802.16j 移 動 式 的 多 重 跳 躍 中 繼 站 網 路 (Mobile Multi-hop Relay Networks, MMR Networks) 定義了 Access zone 與 Relay zone,為了對不同類別的資料流給予不同服務品質(Quality of Service, QoS)的頻寬配置,並在頻寬不足時,使在Access zone 和 Relay zone 之間的資料流有機會進行頻寬協調(Bandwidth Negotiation) , 我 們 在 本 論 文(thesis) 中 提 出 一 套 具 有 頻 寬 協 調 機 制 的排 程(Bandwidth-Negotiation Scheduling, BNS)演算法。BNS 為了確保較高優先權的rtPS 可優先取得頻寬,即使在頻寬配置的過程中發生頻寬不夠滿足其時間限制(delay constraint)的需求時,可進行頻寬協調;因為 nrtPS 有最小傳輸率的需求(minimum bit rate, MBR),BNS 會盡可能滿足其 MBR 的需求,當頻寬不足以滿足其 MBR 時,nrtPS 也可以進行 Negotiation 以取得頻寬,除非 BE 的封包丟失率過高,BNS 才會降低 nrtPS 的頻寬,使其至少還有 MBR 可用,多出來的頻寬則撥給 BE,降低 BE 發生 starvation 的可能。因此我們提出的 BNS 可以動態調整 Access 和 Relay zone 的界線,使各類別資料流能得到適當的頻寬配置,有效提升兩 zone 之間的頻寬使用率。我們建立馬可夫鏈數學模型來分析網路效能進行分析,並且改變不同的網路參數改變時,我們觀察 BNS 演算法與傳統無法改變 boundary 的機制在效能上的差異。由於 BNS 是以滿足不同類別資料流的 QoS 為第一考量,而非高傳輸率,故由數學分析結果可發現,BNS 除了可降低 rtPS 平均延遲時間超出delay constraint 的機率、也可以提昇了 rtPS 的平均傳輸率(average throughput),並在 rtPS延遲時間限制變得較寬鬆時,BNS 可以增加 nrtPS 的平均傳輸率並降低其平均封包丟失數(average packet loss),並可有效降低 BE 發生 starvation 的機率。
Abstract
In IEEE 802.16j MMR (Mobile Multi-hop Relay) networks, bandwidth is divided into two zones, access zone to mobile stations and relay zone to relay stations. To satisfy the requirements of Quality of Services (QoS) for different types of traffic between access zone and relay zone, we propose Bandwidth-Negotiation Scheduling (BNS) for BS and RS to adequately allocate bandwidth. For the purpose of satisfying higher-priority rtPS traffic, BNS can negotiate bandwidth between two zones if the allocated bandwidth is insufficient to meet its QoS requirement. Besides, BNS can satisfy bandwidth requirement for nrtPS as much as possible and it will also do negotiation to allocate at least minimum bandwidth if resource is not sufficient. At last, BNS may reduce the allocated bandwidth for nrtPS if PLR (Packet Loss Ratio) of BE is too high. Therefore, the starvation probability of BE can be decreased by earning this extra bandwidth from nrtPS. In short, the proposed BNS can adjust the boundary between access zone and relay zone dynamically and it can improve bandwidth utilization effectively. Through Markov-chain model, we evaluated the performance of BNS and compared its performance to a mechanism with fixed-boundary. Analytical results have shown that BNS can decrease the probability of exceeding delay constraint for rtPS, increase the throughput, and decrease the PLR for nrtPS when rtPS delay constraint is increased. Moreover, BNS can significantly reduce the possibility of starvation for BE traffic.
目次 Table of Contents
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 論文架構 3
第二章 IEEE 802.16j MMR 的頻寬配置 4
2.1 802.16j MMR 的系統架構 4
2.1.1 802.16j MMR 的訊框架構 6
2.1.2 802.16j MMR 的資料傳遞 8
2.1.3 IEEE 802.16j MMR 的資料類別 13
2.2 相關研究 15
2.2.1 固定式的頻寬配置機制 15
2.2.2 動態式的頻寬配置機制 18
2.3 本論文的頻寬配置法 20
第三章 具有頻寬協調機制的排程演算法 22
3.1 系統架構 22
3.2 BNS 演算法 23
3.2.1 PCS 29
3.2.2 ZNS 34
第四章 數學分析與結果討論 36
4.1 馬可夫鏈數學模型 36
4.1.1 狀態轉移機率的計算 37
4.1.2 轉移機率矩陣 38
4.1.3 舉例說明 42
4.2 效能公式的推導 45
4.2.1 rtPS 與 nrtPS 需要 Negotiation 的機率 45
4.2.2 rtPS 與 nrtPS Negotiation 成功的機率 48
4.2.3 rtPS 平均延遲時間超出delay constraint 的機率 53
4.2.4 Throughput 55
4.2.5 平均封包丟失數 Average Packet Loss 58
4.2.6 整體系統的 Throughput 59
4.3 數據結果與討論 59
4.3.1 資料流的 Negotiation 60
4.3.2 rtPS 的延遲時間限制(delay constraint,τ) 63
4.3.3 nrtPS 的 Throughput 65
4.3.4 平均封包丟失數 68
4.3.5 整體系統 Throughput 72
第五章 結論與未來工作 74
5.1 結論 74
5.2 未來工作 76
參考文獻 77
索引 83
參考文獻 References
[1] IEEE Std. 802.16, “Part 16: Air Interface for Fixed Broad Band Wireless Access Systems,” Apr. 2004.
[2] IEEE Std. 802.16e, “Amendment to Air Interface for Fixed Broad Band Wireless Access Systems – Physical and MAC Layers for Combined Fixed and Mobile Operation in Licensed Bands,” 2005.
[3] IEEE Std. 802.16j-2009, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems
Amendment 1: Multiple Relay Specification,” Jun. 2009.
[4] B. Kwon, Y. Chang, and John A. Copeland, “A Network Entry Protocol and an OFDMA Symbol Allocation Scheme for Non-Transparent Relay Stations in IEEE 802.16j MMR Networks,” Proc. MILCOM, Nov. 16-19, 2008.
[5] D. Niyato, E. Hossain, D. Kim, and Z. Han, “Relay-centric Radio Resource Management and Network Planning in IEEE 802.16j Mobile Multihop Relay Networks,” IEEE Transactions on Wireless Communications, Vol. 8, Issue. 12, pp. 6115-6125, Dec. 2009.
[6] C. Nie, T. Korakis, and S. Panwar, “A Multi-Hop Polling Service with Bandwidth Request Aggregation in IEEE 802.16j Networks,” IEEE Vehicular Technology Conference, May. 11-14, 2008.
[7] I.-K. Chan and W. Liao, “Adaptive Bandwidth Allocation for TCP Traffic in IEEE 802.16j Wireless Networks with Transparent Relay Stations,” IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2008.
[8] H. Zeng and C. Zhu, “System Design and Resource Allocation in 802.16j Multi-hop Relay Systems under the User Rate Fairness Constraint,” IEEE International Conference on Communications, Jun. 14-18, 2009.
[9] D. Ghosh, A. Gupta, and P. Mohapatra, “Adaptive Scheduling of Prioritized
Traffic in IEEE 802.16j Wireless Networks,” IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, Oct. 12-14, 2009.
[10] D. Niyato, E. Hossain, D.-I. Kim, and Z. Han, “Joint Optimization of Placement and Bandwidth Reservation for Relays in IEEE 802.16j Mobile Multihop Networks,” IEEE International Conference on Communications, Jun. 14-18, 2009.
[11] Jane-Hwa Huang, Li-Chun Wang, Chung-Ju Chang, and Wen-Shan Su, “Design of Optimal Relay Location in Two-hop Cellular Systems,” Wireless Networks, Vol. 16, Issue 8, pp. 2179-2189, Nov. 2010.
[12] Kuan-Po Lin and Hung-Yu Wei, “Paging and Location Management in IEEE 802.16j Multihop Relay Network,” Journal of Computer Systems, Networks, and Communications (JCSNC), Special Issue of WiMAX, LTE, and WiFi Interworking, vol. 2010, May. 2010
[13] S.-W. Kim, J.-Y. Jung, and J.-W. Jang, “Frequency Reuse During Relay Transmission for Two-hop IEEE 802.16j Relay Networks,” International Conference on Wireless Communications & Signal Processing, Nov. 13-15, 2009.
[14] K. Sundaresan and S. Rangarajan, “On Exploiting Diversity and Spatial Reuse in Relay-enabled Wireless Networks,” in Proc. ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), May. 2008.
[15] Weiwei Wang, Zihua Guo, Jun Cai, Xuemin Shen, and Changjia Chen, “Multiple Frequency Reuse Schemes in the Two-hop IEEE 802.16j Wireless Relay Networks with Asymmetrical Topology,” Computer Communications, Vol. 32 Issue. 11, pp. 1298-1305, July 2009.
[16] D. Li and H. Jin, “Relay Selection in Two-Hop IEEE 802.16 Mobile Multi-Hop Relay Networks,” First International Workshop on Education Technology and Computer Science, Vol. 2, pp. 1007-1011, Mar. 7-8, 2009.
[17] Masato Okuda, Chenxi Zhu, and Forin Viorel, "Multihop Relay Extension for WiMAX Networks-Overvew and Benefits of IEEE 802.16j Standard," Available: http://www.fujitsu.com/downloads/MAG/vol144-3/paper10.pdf., Jan. 16, 2008.
[18] Z. Tao, K.-H. Teo, and J. Zhang, “Aggregation and Concatenation in IEEE 802.16j Mobile Multihop Relay (MMR) Networks,” IEEE Mobile WiMAX
Symposium, Mar. 25-29, 2007.
[19] K.-W. Cheng and J.-C. Chen, “Dynamic Pre-Allocation HARQ (DP-HARQ) in IEEE 802.16j Mobile Multihop Relay (MMR),” IEEE International Conference
on Communications, Jun. 14-18, 2009.
[20] S.-R. Yang, C.-C. Kao, W.-C. Kan, and T.-C. Shih, “Handoff Minimization Through a Relay Station Grouping Algorithm With Efficient Radio Resource Scheduling Policies for IEEE 802.16j Multihop Relay Networks,” Accepted for Publication in IEEE Transactions on Vehicular Technology, pp. 2185-2197, Vol. 59, Issue. 5, Jun. 2010.
[21] S. Chae and Y. Kim, “Enhanced MCS for Direct Relaying in Transparent RS of IEEE 802.16j,” 10th International Conference on advanced Communication Technology, Feb. 17-20, 2008.
[22] C.-Y. Chang et. al., “A Novel Placement Mechanism for Capacity Enhancement in IEEE 802.16j WiMAX Networks,” IEEE International Conference on Communications, June 14-18, 2009.
[23] Yang Yu, Sean Murphy, and Liam Murphy, “A Clustering Approach to Planning Base Station and Relay Station Locations in IEEE 802.16j Multi-hop Relay Networks,” IEEE International Conference on Communications, May 19-23, 2008.
[24] Jianfeng Chen, Wenhua Jiao, and Hongxi Wang, “A Service Flow Management Strategy for IEEE 802.16 Broadband Wireless Access Systems in TDD Mode,” In Proc. of the IEEE International Conference on Communications(ICC’05), Vol. 5, pp. 3422-3426, May 12-20, 2005.
[25] Jianfeng Chen, Wenhua Jiao, and Qian Guo, “An Integrated QoS Control Architecture for IEEE 802.16 Broadband Wireless Access Systems,” In Proc. of the IEEE Global Telecommunications Conference(GLOBECOM’05), Vol. 6, pp. 3330-3335, Nov. 28-Dec. 2, 2005.
[26] Haitang Wang, Wei Li, and Dharma P. Agrawal, “Dynamic Admission Control and QoS for 802.16 Wireless MAN,” In Proc. of the Wireless Telecommunications Symposium(WTS’05), pp. 60-66, Apr. 28-30, 2005.
[27] Haitang Wang, Bing He, and Dharma P. Agrawal, “Admission Control and Bandwidth Allocation above Packet Level for IEEE 802.16 Wireless MAN,” In Proc. of the International Conference on Parallel and Distributed Systems(ICPADS’06), Vol. 1, pp. 599-604, July 12-15, 2006.
[28] Z. Tao, A. Li, K.-H. Teo, and J. Zhang, “Frame Structure Design for IEEE 802.16j Mobile Multihop Relay (MMR) Networks,” Global Telecommunications
Conference, Nov. 26-30, 2007.
[29] P. Kolomitro, A.-E.M. Taha, and H. Hassanein, “A Performance Comparison of Frame Structures in WiMax Relay Networks,” IEEE 35th Conference on Local Computer Networks (LCN), pp. 769-776, Oct. 10-14, 2010.
[30] S.-Y. Kim, S.-J. Kim, S.-W. Ryu, H.-W. Lee, and C.-H. Cho, “Performance Analysis of Single-frame Mode and Multi-frame Mode in IEEE 802.16j MMR System,” IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2008.
[31] Modified LWX add-on. Available at http://research.cs.queensu.ca/~pandeli/downloads.htm, May 3, 2010.
[32] M. Salem, A. Adinoyi, H. Yanikomeroglu, and Young-Doo Kim, “Radio Resource Management in OFDMA-Based Cellular Networks Enhanced with
Fixed and Nomadic Relays,” IEEE Wireless Communications and Networking Conference (WCNC 2010), pp. 1-6, April. 18-21, 2010.
[33] D. Niyato and E. Hossain, “Queue-Aware Uplink Bandwidth Allocation and Rate Control for Polling Service in IEEE 802.16 Broadband Wireless Networks,” IEEE Transactions on Mobile Computing, Vol. 5, Issue. 6, pp. 668-679, Jun. 2006.
[34] Q. Albluwi, N.A. Ali, and H. Hassanein, , “A Dynamic Frame Partitioning Scheme for IEEE 802.16 Mesh and Multihop Relay Networks,” IEEE International Conference on Communications (ICC’09), Jun. 14-18, 2009.
[35] A.F. Bayan and Tat-Chee Wan, “On-Demand Flexible Tiered QoS Scheduling Algorithm for IEEE 802.16j Multi-hop Relay Networks,” International Symposium in Information Technology (ITSim), Vol. 2, pp. 586-591, 2010.
[36] Pavel Mach and Robert Bestak, “Radio Resources Allocation for Decentrally Controlled Relay Stations,” Wireless Networks, Vol. 17, Issue 1, pp. 133-148 Jan. 2011.
[37] Ridong Fei, Kun Yang, Shumao Ou, and Hsiao-Hwa Chen, “QoS-Aware Two-level Dynamic Uplink Bandwidth Allocation Algorithms in IEEE 802.16j Based Vehicular Networks,” Wireless Personal Communications, Vol. 56 Issue. 3, pp. 417-433, Feb. 2011
[38] Hoon Baek and Ju Wook Jang, “Dynamic Frame Scheduling with Load Balancing for IEEE 802.16j,” International Conference on Wireless Communications & Signal Processing (WCSP 2009), pp. 1-5, Nov. 13-15, 2009.
[39] D. Ghosh, A. Gupta, and P. Mohapatra, “Adaptive Scheduling of Prioritized Traffic in IEEE 802.16j Wireless Networks,” IEEE Int’l Conference on Wireless and Mobile Computing, Networking and Communication, Oct. 12-14, 2009.
[40] F. Gordejuela-Sanchez et. al., “Efficient Mobile WiMAX Capacity Estimation in a Multihop Environment,” Proc. ICCS, Nov. 19-21, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code