Responsive image
博碩士論文 etd-0808112-112835 詳細資訊
Title page for etd-0808112-112835
論文名稱
Title
利用分子動力學研究水分子於碳奈米線圈中之 擴散行為
The study on diffusion behaviors of water molecules within carbon nanocoils by molecular dynamics simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-29
繳交日期
Date of Submission
2012-08-08
關鍵字
Keywords
分子動力學、水分子、平均平方位移、平方位移、擴散係數、碳奈米線圈
Carbon nanocoil, Molecular dynamics, Water molecule, Diffusion coefficient, Mean square displacement, square displacement
統計
Statistics
本論文已被瀏覽 5645 次,被下載 514
The thesis/dissertation has been browsed 5645 times, has been downloaded 514 times.
中文摘要
本文利用分子動力學(MD)理論研究(5,5) 、(10,10)與(10,10)@(5,5)碳奈米線圈機械性質與傳輸行為,本文分為兩部分:
1. 探討(5,5) 、(10,10)與(10,10)@(5,5)碳奈米線圈之機械性質,計算勢能選定第二代 REBO 勢能函數來描述碳原子與碳原子,研究方法為利用拉伸試驗以計算出單壁奈米碳管之應力應變行為,如此便可經由變形過程中得到各種不同物理量,其中包含降服應力、最大應力與楊氏模
數等。除此之外,我們藉由原子的滑移向量(slip vector)參數來探討奈米碳管在拉伸時的動態行為及碳管破裂後之微結構變化,此研究結果表明(5,5) 、(10,10)與(10,10)@(5,5)碳奈米線圈比管徑的奈米碳管有著相當高的彈性。
2. 探討水分子在不同拉伸應變下的(10,10)與(5,5)碳奈米線圈中之擴散行為。計算勢能選定為 COMPASS 來描述碳原子與碳原子、碳原子與水分子間和水分子與水分子的作用力。平方位移(SD)和平均平方位移(MSD)和擴散係數被利用去分析水分子在碳奈米線圈中的擴散行為。結果顯示水分子的擴散係數會隨著拉伸碳奈米線圈應變增加而增加,當碳奈米線圈應變增加,且結構的變形導致水分子的擴散係數下降,所有計算結果也將與(5,5)和(10,10)單壁奈米碳管比較。我們的研究結果表明水分子在碳奈米線圈中的擴散係數比在奈米碳管中低,這是由於碳奈米線圈的幾何形狀容易阻礙管中水分子的擴散。
Abstract
In this study, molecular dynamics (MD) simulations was employed to investigate (5,5), (10,10) single-walled nanocoils and (5,5)@(10,10) double-walled carbon nanocoils. The study can be arranged into two parts:
In part I:
Investigate the mechanical properties of (5,5), (10,10) single-walled nanocoils and (5,5)@(10,10) double-walled carbon nanocoils. The second reactive empirical bond order (REBO) potential was employed to model the interaction between carbon
atoms. The contours of atomic slip vector and sequential slip vector were used to investigate the structural variations at different strains during the tension process. The yielding stress, maximum tensile strength, and Young’s modulus were determined from the tensile stress-strain profiles. The results show that the nanocoils have
superelastic characteristics to the carbon nanotube in the same tube diameter.
In part II:
Investigate the diffusion behavior of water molecules confined inside narrow (5,5)
and (10,10) carbon nanocoils under different tensile strains. The condensed-phase
optimized molecular potentials for atomistic simulation studies (COMPASS) potential
was employed to model the interaction between carbon-carbon atoms,carbon
atoms-water molecules and water-water molecules. To analysis the kinetic behavior of water molecules in two carbon nanocoils, the diffusion coefficients, square displacement (SD) and mean square displacement (MSD) of water molecules were calculated. The results show that diffusion coefficient of water will increase with the strains of carbon nanocoils. However, the diffusion coefficient has a significant decrease in a large strain due to the structural deformation of carbon nanocoils. The
diffusion behaviors of water inside the (5,5) and (10,10) carbon nanotubes were also investigated to compare the results in (5,5) and (10,10) carbon nanotubes. Our results indicate that two carbon nanocoils have a lower diffusion coefficient of water than that of carbon nanotubes because the geometry of carbon nanocoil is easily to block
up the diffusion of water molecules.
目次 Table of Contents
摘 要 I
ABSTRACT II
目 錄 IV
圖目錄 VI
表目錄 X
第一章 前言 1
1.1研究動機與目的 1
1.2本文架構 12
第二章 分子動力學理論方法 13
2.1 勢能函數 14
2.1.1 REBO 勢能 14
2.1.2 COMPASS 勢能 16
2.2 積分法則 19
2.3 時間步階選取 20
2.4 溫度修正 20
2.4.1 Nose-Hoover方法 21
2.4.2 Andersen方法 22
2.5 週期性邊界 23
第三章 分子動力學數值方法 24
3.1鄰近原子表列數值方法 24
3.1.1 截斷半徑法(Cut-off method) 24
3.1.2 Verlet表列法 25
3.1.3 Cell Link表列法 26
3.1.4 Verlet表列結合Cell Link表列法 27
3.2 物理參數與無因次化 28
3.3數值統計方法 30
3.3.1 原子級應力計算方法 30
3.3.2 滑移向量(Slip Vector) 33
3.3.3 擴散係數計算方法 34
3.4 模擬流程圖 37
第四章 結果分析與討論 38
4.1 碳奈米線圈之機械性質 38
4.1.1 物理模型之建構 38
4.1.2 碳奈米線圈之機械性質分析 38
4.2 水分子在碳奈米線圈管中之擴散行為 51
4.2.1 物理模型之建構 51
4.2.2 水分子在碳奈米線圈之擴散 59
4.2.3 水分子在碳奈米線圈不同應變下之擴散 63
4.1.4 碳奈米線圈結構應變之恢復探討 76
第五章 結論 78
5.1 結論 78
5.2 未來展望與建議 80
參考文獻 81
參考文獻 References
[1] Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[2] Gupta, S., Saxena, A., Geometrical interpretation and curvature distribution in nanocarbons. Journal of Applied Physics, 2011, 109(7), 074316.
[3] Ciocan, R., Gaillard, J., Skove, M. J., Rao, A. M., Determination of the bending modulus of an individual multiwall carbon nanotube using an electric harmonic detection of resonance technique. Nano Letters, 2005, 5(12), 2389-2393.
[4] Lau, K. T., Lu, M., Hui, D., Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. Composites Part B-Engineering, 2006, 37(6), 437-448.
[5] Liu, L. Z., Gao, H. L., Zhao, J. J., Lu, J. P., Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations. Nanoscale Research Letters, 2010, 5(3), 478-483.
[6] Hayashida, T., Pan, L., Nakayama, Y., Mechanical and electrical properties of carbon tubule nanocoils. Physica B-Condensed Matter, 2002, 323(1-4), 352-353.
[7] Pan, L., Konishi, O., Tanaka, H., Suekane, O., Nosaka, T., Effect of morphology on field emission properties of carbon nanocoils and carbon nanotubes. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005, 44(4A), 1652-1654.
[8] Chen, X.Q., Zhang, S. L., Dikin, D. A., Ding, W. Q., Ruoff, R. S., Pan, L. J., Mechanics of a carbon nanocoil. Nano Letters, 2003, 3(9), 1299-1304.
[9] Lau, K.T., Lu, M., Liao, K., Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites. Composites Part a-Applied Science and Manufacturing, 2006, 37(10), 1837-1840.
[10] Davis W. R., Slawson, R.J., Rigby, G. R., An unusual form of carbon. Nature, 1953, 171, 756.
[11] Ihara, S., S. Itoh, and J. Kitakami, Helically coiled cage forms of graphitic carbon. Physical Review B, 1993, 48(8), 5643-5647.
[12] Motojima, S., Kawaguchi, M., Nozaki, K., Iwanaga, H., Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics. Applied Physics Letters, 1990, 56(4), 321-323.
[13] Motojima, S., Chen, Q. Q., Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. Journal of Applied Physics, 1999, 85(7), 3919-3921.
[14] Zhang, M., Nakayama, Y., Pan, L. J., Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst. Japanese Journal of Applied Physics Part 2-Letters, 2000, 39(12A), L1242-L1244.
[15] Biro, L. P., Ehlich, R., Osvath, Z., Koos, A., Horvath, Z. E., Gyulai, J., Nagy, J. B., From straight carbon nanotubes to Y-branched and coiled carbon nanotubes. Diamond and Related Materials, 2002,11(3-6), 1081-1085.
[16] Pan, L.J., Hayashida, T., Zhang, M., Nakayama, Y., Field emission properties of carbon tubule nanocoils. Japanese Journal of Applied Physics Part 2-Letters, 2001, 40(3B), L235-L237.
[17] Pradhan, D., Sharon, M., Carbon nanotubes, nanofilaments and nanobeads by thermal chemical vapor deposition process. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2002, 96(1), 24-28.
[18] Takenaka, S., Ishida, M., Serizawa, M., Tanabe, E., Otsuka, K., Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts. Journal of Physical Chemistry B, 2004, 108(31), 11464-11472.
[19] Xie, J. N., Mukhopadyay, K., Yadev, J., Varadan, V. K., Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes. Smart Materials & Structures, 2003, 12(5), 744-748.
[20] Pan, L.J., Zhang, M., Nakayama, Y., Growth mechanism of carbon nanocoils. Journal of Applied Physics, 2002, 91(12), 10058-10061.
[21] Saveliev, A.V., Merchan-Merchan, W., Kennedy, L.A., Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combustion and Flame, 2003, 135(1-2), 27-33.
[22] Lopez, C.F., Nielsen, S. O., Moore, P. B., Klein, M. L., Understanding nature's design for a nanosyringe. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13), 4431-4434.
[23] Striolo, A., Water self-diffusion through narrow oxygenated carbon nanotubes. Nanotechnology, 2007, 18(47), 10.
[24] Holt, J.K., Noy, A., Huser, T., Eaglesham, D., Bakajin, O., Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Letters, 2004, 4(11), 2245-2250.
[25] Zhao, H. Z., Rizal, B., McMahon, G., Wang, H.Z., Dhakal, P., Kirkpatrick, T., Ren, Z.F., Chiles, T.C., Naughton, M. J., Cai, D., Ultrasensitive Chemical Detection Using a Nanocoax Sensor. Acs Nano, 2012, 6(4), 3171-3178.
[26] Sun, L., Crooks, R. M., Single carbon nanotube membranes: A well-defined model for studying mass transport through nanoporous materials. Journal of the American Chemical Society, 2000, 122(49), 12340-12345.
[27] Zheng, M., Jagota, A., Semke, ED., Diner, BA., Mclean, R. S., Lustig, S. R., Richardson, R. E., Tassi, N. G., DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials, 2003, 2(5), 338-342.
[28] Deamer, D. W., Akeson, M., Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends in Biotechnology, 2000, 18(4), 147-151.
[29] Ajayan, P. M., Iijima, S., Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361(6410), 333-334.
[30] Ajayan, P.M., Stephan, O., Redlich, P., Colliex, C., Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375(6532), 564-567.
[31] Naguib, N., Ye, H. H., Gogotsi, Y., Yazicioglu, A. G., Megaridis, C. M., Yoshimura, M., Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Letters, 2004, 4(11), 2237-2243.
[32] Rossi, M.P., Ye, H. H., Gogotsi, Y., Babu, S., Ndungu, P., Bradley, J. C., Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Letters, 2004, 4(5), 989-993.
[33] Mamontov, E., Burnham, C. J., Chen, S. H., Moravsky, A. P., Loong, C. K., de Souza, N. R., Kolesnikov, A. I., Dynamics of water confined in single- and double-wall carbon nanotubes. Journal of Chemical Physics, 2006, 124(19), 6.
[34] Holt, J.K., Park, H. G., Wang, Y. M., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., Bakajin, O., Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006, 312(5776), 1034-1037.
[35] Byl, O., Liu, J. C., Wang, Y., Yim, W. L., Johnson, J. K., Yates, J. T., Unusual hydrogen bonding in water-filled carbon nanotubes. Journal of the American Chemical Society, 2006, 128(37), 12090-12097.
[36] Farimani, A. B., Aluru, N. R., Spatial Diffusion of Water in Carbon Nanotubes: From Fickian to Ballistic Motion. Journal of Physical Chemistry B, 115(42), 12145-12149.
[37] Zheng, Y. G., Ye, H. F., Zhang, Z. Q., Zhang, H. W., Water diffusion inside carbon nanotubes: mutual effects of surface and confinement. Physical Chemistry Chemical Physics, 2012, 14(2), 964-971.
[38] Ye, H.F., Zhang, H. W., Zheng, Y. G., Zhang, Z. Q., Nanoconfinement induced anomalous water diffusion inside carbon nanotubes. Microfluidics and Nanofluidics, 2011, 10(6), 1359-1364.
[39] Liu, Y. C., Wang, Q., Transport behavior of water confined in carbon nanotubes. Physical Review B, 2005, 72(8), 4.
[40] Zheng, J., Lennon, E. M., Tsao, H. K., Sheng, Y. J., Jiang, S. Y., Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient. Journal of Chemical Physics, 2005, 122(21), 214702.
[41] Khademi, M., Sahimi, M., Molecular dynamics simulation of pressure-driven water flow in silicon-carbide nanotubes. Journal of Chemical Physics, 2011, 135(20), 7.
[42] Meng, X. W., Wang, Y., Zhao, Y. J., Huang, J. P., Gating of a Water Nanochannel Driven by Dipolar Molecules. Journal of Physical Chemistry B,2011, 115(16), 4768-4773.
[43] Li, H., Zhang, X. Q., Liew, K. M., Liu, X. F., Structures of water molecular nanotube induced by axial tensile strains. Physics Letters A, 2008, 372(41), 6288-6293.
[44] Hummer, G., Rasaiah, J.C., Noworyta, J.P., Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414(6860), 188-190.
[45] Wan, R.Z., Li, J., Lu, H. J., Fang, H. P., Controllable water channel gating of nanometer dimensions. Journal of the American Chemical Society, 2005, 127(19), 7166-7170.
[46] Wang, Q., Transportation of hydrogen molecules using carbon nanotubes in torsion. Carbon, 2009, 47(7), 1870-1873.
[47] Irving, J. H., Kirkwood, J. G., The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. Journal of Chemical Physics, 1950,18(6), 817.
[48] Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni B., Sinnott, S. B., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, 2002,14(4), 783-802.
[49] Tersoff, J., New empirical approach for the structure and energy of covalent systems. Physical Review B,1988, 37(12), 6991-7000.
[50] Abell, G. C., Empirical chemical pseudopotential theory of molecular and metallic bonding. Physical Review B, 1985, 31(10), 6184-6196.
[51] Brenner, D. W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, 1990, 42(15), 9458-9471.
[52] Sun, H., Ren, P., Fried, J. R., The COMPASS force field: parameterization and validation for phosphazenes. Computational and Theoretical Polymer Science, 1998, 8(1-2), 229-246.
[53] Teleman, O., Jonsson, B., Engstrom, S., A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Molecular Physics, 1987, 60(1), 193-203.
[54] Sun, H., COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds. Journal of Physical Chemistry B, 1998, 102(38), 7338-7364.
[55] Nose, S., A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics,1984, 81(1), 511.
[56] Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A,1985, 31(3), 1695-1697.
[57] Andersen, H. C., Molecular dynamics simulations at constant pressure and-or temperature. Journal of Chemical Physics, 1980. 72(4), 2384-2393.
[58] Weinan, E., Li, D., The Andersen thermostat in molecular dynamics. Communications on Pure and Applied Mathematics, 2008, 61(1), 96-136.
[59] Rapaport, D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
[60] Allen, M. P., Tildesley, D. J., Computer Simulation of Liquids, Oxford Science, London, 1991.
[61] Frenkel D., Smit, B., Understanding Molecular Simulation, Academic Press, San Diego, 1996.
[62] Haile, J. M., Molecular Dynamics Simulation, John Wiley & Sons,New York, 1992.
[63] Chandra, N., Namilae S., Shet, C., Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Physical Review B, 2004, 69(9), 094101.
[64] Tokita, N., Hirabayashi, M., Azuma, C., Dotera, T., Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation. Journal of Chemical Physics,2004, 120(1), 496-505.
[65] Srolovitz, D., Maeda, K., Vitek, V., Egami, T., Structural defects in amorphous solids Statistical analysis of a computer model. Philosophical Magazine A,1981, 44(4), 847-866.
[66] Miyazaki, N., Shiozaki, Y., Calculation of mechanical properties of solids using molecular dynamics method. JSME International Journal Series A: Mechanics & Material Engineering, 1996, 39(4), 606-612.
[78] Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C., Foiles, S. M., Surface Step Effects on Nanoindentation. Physical Review Letters, 2001, 87, 165507.
[79] Vlack, L. H. V., Elements of Materials Science and Engineering, 1980.
[80] Kelchner, C. L., Plimpton, S. J., Hamilton, J. C., Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998, 58(17), 11085-11088.
[81] Tildesley, M.P.A.a.D.J., Computer Simulation of Liquids. Oxford University Press, 1987.
[82] Meunier, M., Diffusion coefficients of small gas molecules in amorphous cis-1,4-polybutadiene estimated by molecular dynamics simulations. Journal of Chemical Physics, 2005, 123(13), 134906.
[83] Liu, Y.C., Moore, J. D., Roussel, T. J., Gubbins, K. E., Dual diffusion mechanism of argon confined in single-walled carbon nanotube bundles. Physical Chemistry Chemical Physics, 2010, 12(25), 6632-6640.
[84] Liu, Y. C., Wang, Q., Lu, L.H., Transport properties and distribution of water molecules confined in hydrophobic nanopores and nanoslits. Langmuir, 2004, 20(16), 6921-6926.
[85] Mori, H., Hirai, Y., Ogata, S., Akita, S., Nakayama, Y., Chirality dependence of mechanical properties of single-walled carbon nanotubes under axial tensile strain. Journal of Applied Physics, 2005, 44(42-45), L1307-L1309.
[86] Liew, K. M., He, X. Q., Wong, C. H., On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Materialia, 2004, 52(9), 2521-2527.
[87] Mills, R., Self-Diffusion In Normal and Heavy Water in the Range 1-45 degrees. Journal of Physical Chemistry, 1973, 77(5), 685-688.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code