Responsive image
博碩士論文 etd-0808112-114247 詳細資訊
Title page for etd-0808112-114247
論文名稱
Title
砷化銦/砷化鎵 多層堆疊量子點之載子動力學研究
The Study of Carrier Dynamics in Multi-Stacked InAs/GaAs Quantum Dots
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-10
繳交日期
Date of Submission
2012-08-08
關鍵字
Keywords
量子點、砷化鎵、多層堆疊、載子動力學、激發探測、砷化銦
multi-stacked, GaAs, InAs, quantum dot, dynamics, pump-probe
統計
Statistics
本論文已被瀏覽 5664 次,被下載 0
The thesis/dissertation has been browsed 5664 times, has been downloaded 0 times.
中文摘要
本論文的研究方法,主要是使用時間解析激發-探測光譜量測,樣品為砷化銦/砷化鎵多層堆疊量子點結構,分別有不同的砷化鎵間隔層厚度(10~30 nm)。隨砷化鎵間隔層厚度變薄,使砷化銦量子點與砷化鎵所受應力變大,會有價電帶能階分裂與偏移的現象。首先,利用光致螢光量測各量子點樣品,均發現四個發光能階,分別為重電洞與輕電洞基態能階,以及其激發態能階,隨間隔層厚度變薄,能階均有藍移的現象。砷化鎵能隙是屬於不發光能隙,藉由激發-探測光譜(TRPP)與折射率變化Δn的光學特性,探討砷化鎵的重電洞能階,隨砷化鎵間隔層厚度不同的改變,並發現砷化鎵的重電洞能階,隨著應力變大,也是有藍移的現象。發現TRPP光譜因激發能量改變,會有正負的轉變,此反轉現象是能帶填充效應,使Δn在接近砷化鎵的重電洞躍遷能階,有正負值的轉變。在激發能量大於砷化鎵的重電洞能階時,為正的TRPP光譜,隨著激發載子濃度減少,延遲時間(Delay time)增加,TRPP光譜出現負值,此負值是因為載子濃度減少,使能隙重整化與自由載子吸收效應較為明顯所致。
Abstract
This paper is using the Time-resolved Pump-Probe spectroscopy to study the quantum dots samples. The samples are InAs/GaAs multi-stacked quantum dots that with different spacer layer (10~30 nm). The stain between the InAs quantum dots and GaAs spacer layer that makes the valence band to split into heavy-hole and light-hole energy band. From the photoluminescence (PL), we see the heavy-hole and light-hole energy band are blue shift in InAs quantum dot, when the GaAs spacer layer decrease. We use the optic property of Pump-Probe spectroscopy of the change in the refraction index Δn to investigate the shift of heavy-hole energy band, when the GaAs spacer layer decrease. We see the heavy-hole energy band of GaAs is blue shift when the GaAs spacer layer decrease. When we change the pump energy, the TRPP spectroscopy signal will change from positive to negative. This is the band-filling effect changes the refraction index Δn , when the energy close to the GaAs heavy hole energy state. When the energy is above the GaAs heavy hole energy state, the TRPP signal is positive. When the excited carrier density decrease and the delay time increase, TRPP signal will change the positive value to negative value. These are band-gap renormalization and free-carrier absorption effect change the refraction index Δn, when the carrier density decrease.
目次 Table of Contents
誌 謝 ......................................................................ii
摘要 .....................................................................iii
Abstract .....................................................................iv
目錄 ......................................................................v
圖目錄 ...................................................................viii
表目錄 ...................................................................xiii
第一章 導論 ......................................................................1
1-1 自聚式量子點的發展.................................................1
1-2 文獻回顧.....................................................................4
1-3 研究動機.....................................................................7
第二章 實驗架構...............................................................8
2-1 激發-探測原理,...........................................................8
2-2 實驗裝置....................................................................11
2-3 零點位置的判定........................................................14
2-4 鎖相放大器................................................................15
第三章 載子動力學..........................................................18
3-1 激發電子能量釋放過程............................................18
3-2 量子點中的物理機制................................................19
3-2.1 載子捕獲(Carrier Capture)機制....................20
3-2.2 載子釋放能量(energy relaxation)機制..........21
3-2.3 電子與電洞的結合機制.........................................22
3-3 激發載子濃度激發載子濃度與光束大小計.............24
3-4 光激發載子與吸收係數及折射係數變化之效應.....25
3-4.1 能帶填充(band filling)效應.............................25
3-4.2 能隙重整化(band-gap renormalization)效應..27
3-4.3 自由載子吸收(free-carrier absorption)效應....28
第四章 垂直耦合量子點介紹與樣品結構..........................29
4-1 單層自聚式量子點........................................................29
4-2 垂直耦合自聚式量子點................................................31
4-3 砷化銦/砷化鎵應變異質結構.......................................32
4-4 多層量子點結構介紹....................................................34
第五章-樣品分析與討論.....................................................37
5-1 量子點結構之能階分析...............................................37
5-1.1光致螢光量測(PL).....................................................37
5-1.2激發-探測(TRPP)實驗現象討論(不同激發能量)....40
5-1.3能階分析.....................................................................49
5-2 時間解析激發-探測(TRPP)實驗現象的初步討論(不同激發功率)............................................................................51
5-2.1 隨激發載子濃度改變的反轉現象,固定激發波長為808 nm...............................................................................51
5-2.2 各量子點樣品的TRPP光譜圖,激發波長為790~850 nm.....................................................................57
5-2.3 生命週期τ1與τ2的分析討論(正的TRPP光譜).....61
5-2.4生命週期τ1與τ2的分析討論(負的TRPP光譜)......64
第六章-結論.......................................................................66
參考文獻............................................................................68
附錄....................................................................................71

參考文獻 References
[1]林銘杰”開放式量子異質結構之準穩態研究”國立交通大學博士論文(2002)
[2] Dieter Bimberg , Udo W. Pohl. materials today, 14, 9 (2011)
[3] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)
[4] J. Y. Marzin, J. M. Gerard, A. Izrael,D. Barrier, and G. Bastard, Phys. Rev. Lett. 73, 716 (1994).
[5] P. C. Peng, C. T. Lin, H. C. Kuo, W. K. Tsai, J. N. Liu, S. Chi, S. C. Wang, G. Lin, H. P. Yang, K. F. Lin, and J. Y. Chi, “Tunable slow light device using quantum dot semiconductor laser”, Optics Express, 14, 26, 12880 (2006)
[6] 詹國禎 ‘‘砷化銦量子點的光電性質’’ 物理雙月刊(廿五卷三期)(2003)
[7] S. Rouvimov, Z. Liliental-Weber, Journal of Electronic Materials. 27, 5 (1998)
[8] Cheong Hyun Roh, Young Ju Parka, Journal of Crystal Growth. 226, 1 (2001)
[9] Q. Li, Z.Y. Xu,, W.K. Ge, Solid State Communications 115,105 (2000)
[10] Dzmitry A. Yarotski, Richard D. Averitt, J. Opt. Soc. Am. B 19, 6 (2002)
[11] Hyunho Shin, Yo-Han Yoo, J. Phys. D: Appl. Phys. 36, 2612 (2003)
[12] Hai-Ying Liu, Zi-Ming Meng, J. Appl. Phys. 103, 083121 (2008)
[13] M. C. Rath, T. Araya, S. Kumazaki, J. Appl. Phys. 94, 3173 (2003)
[14] Hai-Ying Liu, Qiao-Feng Dai, Solid State Communications 152, 435 (2012)
[15] F Bras, S Sauvage, P Boucaud, Semicond. Sci. Technol. 20, L10 (2005)
[16] S. Sauvage and P. Boucaud, Applied Physics Letters 73, 26 (1998)
[17] S. Ghosh, A. S. Lenihan, M. V. G. Dutt, J. Vac. Sci. Technol. B 19, 4 (2001)
[18] J. Feldmanna, S. T. Cundiff, Journal of Applied Physics 89, 2 (2001)
[19] D. Turchinovich, P. Uhd Jepsen, phys. stat. sol. (c) 0, 5 (2003)
[20] T. Vallaitis, C. Koos, R. Bonk, Optics Express 16, 1 (2008)
[21] T. Piwonski, J. Pulka, E. A. Viktorov, Appl. Phys. Lett. 97, 121103 (2010)
[22] Leonov. M.Yu, Baranov, A. V, Fedorov, A. V,Optics and Spectroscopy109, 3, pp.358-365 (2010)
[23] Jagdeep Shah, “Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures”, Springer (1999)
[24] 王銘崧,“摻雜矽氮化銦薄膜之載子釋放機制研究”國立中山大學物理系研究所碩士論文 (2011)
[25] Model SR850 DSP Lock-in Amplifier” Operation manucel(1992)
[26] J. Shah,“ Ultrafast Spectroscopy of Semiconductors and Semiconductor
Nanostructures”, Springer (1998)
[27] U. Bocklmann and G. Bastard, Phys. Rev. B 42, 8947 (1990)
[28] Y. Masumoto and T. Takagahara, “Semiconductor quantum dots physics,
spectroscopy, and applications” New York : Springer (2002)
[29] E. W. Bogaart, J. E. N. Haverkort, T. Mano, T. Van Lippen, R. Notzel, and J.
H. Wolter, Phys. Rev. B 72, 195301 (2005)
[30] I.N. Stranski and L. Krastnow, Sitzungsber, Akad. Wiss. Wien, Math-Naturwiss. Kl., Abt. 2B 146, 797 (1938)
[31] F. L. Pedrotti, S.J., L. M. Pedrotti, L. M. Pedrotti, “Introduction To Optics”, Third Edition, Pearson Prentice Hall, (2007)
[32] S. S. Prabhu and A. S. Vengurlekar, J. Appl. Phys. 95, 7803 (2004)
[33] Bianr. Bennett, Richard A. Soref, IEEE Journal of Quantum Electronics 26,1 (1990)
[34] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990)
[35] Istvan Daruka and Albert-Laszlo Barabasi, Phys. Rev. Lett. 79, 3708 (1997)
[36] Holger T. Grahn, “Introduction to Semiconductor physics”, World Scientific Publishing Co. Pte. Ltd (1999)
[37] Qianghua Xie, Anupam Madhukar, Ping Chen, and Nobuhiko P. Kobayashi,
Phys. Rev. Lett. 75, 2542 (1995)
[38] E. Borovitskaya and Michael S. Shur, “Quantum dots” River Edge, N.J. World Scientific (2002)
[39]盧書楷,” 砷化銦/砷化鎵多層堆疊量子點載子鬆弛之研究” 國立中山大學物理系研究所碩士論文 (2006)
[40] 鄭孟晴,” 熱退火處理之量子點的能階變化及其理論計算” 國立中央大學物理研究所碩士論文 (2001)
[41] Q. D. Zhuang, J. M. Li, Y. P. Zeng, L. Pan, H. X. Li, M.Y. Kong and L. Y.
Lin, J. Crystal Growth 200, 375 (1999)
[42] D. E. Aspnes , A. A. Studna, Phys. Rev. B 27, 985 (1983)

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.31.247
論文開放下載的時間是 校外不公開

Your IP address is 18.118.31.247
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code