Responsive image
博碩士論文 etd-0808113-002215 詳細資訊
Title page for etd-0808113-002215
論文名稱
Title
在BSN網路上建立與重組可靠的反向路由樹的機制
Construction and Reconfiguration Schemes of Reliable Reversed-Routing Tree for Body Sensor Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-27
繳交日期
Date of Submission
2013-09-09
關鍵字
Keywords
LQI、BSN、PLR、反向路由樹、碰撞
LQI, BSN, PLR, collision, RRT
統計
Statistics
本論文已被瀏覽 5788 次,被下載 792
The thesis/dissertation has been browsed 5788 times, has been downloaded 792 times.
中文摘要
本論文在人體感測網路(Body Sensor Networks, BSN)上建立與重組可靠的反向路由樹(Reversed Routing Tree, RRT)的機制,此一反向路由樹有兩個優點,一為使用multi-hop的樹狀架構去取代傳統的one-hop星狀架構以減少封包的碰撞機率,二為在選擇路徑時考慮到連線品質(Link Quality Indicator, LQI)可以讓封包遺失的比率(Packet Loss Ratio, PLR)降低。另外,我們建立的RRT可以針對人體姿勢的突然改變進行重組,使得移動位置的sensor node得以重新加入新的父節點,以顯著的減少PLR;當人體移動速度太快時,RRT所需的重組時間會不斷的增長,導致移動的節點無法重新加入新的父節點,使得資料無法被傳送出去,最後我們藉由設定比較高的LQI門檻值與比較小的量測LQI封包的時間間隔,可以達到較佳的throughput。
Abstract
This paper constructs a reconfigurable and reliable reversed-routing tree (RRT). There are two purposes of building the RRT: (i) to avoid packet collisions, we use multi-hop tree structure to replace traditional single-hop Star structure; (ii) to reduce packet loss ratio (PLR), the RRT selects the routes based on the link quality indicator (LQI). Additionally, once there is a sudden human movement, the RRT can reconfigure itself such that a moving sensor node will re-connect to another parent node, which reduces PLR significantly. RRT reconfiguration time will largely increase when human body moves too quickly, which results in a moving sensor node cannot rejoin its new parent and consequently no data can be forwarded. Yet, the throughput can be improved by giving a higher LQI threshold and a smaller packet interval of LQI measurement.
目次 Table of Contents
第一章 緒論...........................................................1
1.1 研究動機.....................................................1
1.2 研究方法.....................................................2
1.3 章節介紹.....................................................3
第二章  人體感測網路.............................................4
2.1 IEEE 802.15.6.............................................4
2.1.1 PHY ..........................................................4
2.1.2 MAC ..........................................................6
2.2 BSN拓樸.....................................................7
2.3 Link Quality Indicator....................................8
2.4 相關研究.....................................................9
2.5 本論文的機制.............................................12
第三章 可靠的反向路由樹的建立與重組..................14
3.1 反向路由樹系統架構...................................14
3.2 反向路由樹協定..........................................15
3.2.1 建立反向路由樹..........................................16
3.2.2 Periodical_LQI_Measurement......................18
3.2.3 Bad_LQI.....................................................18
3.2.4 反向路由樹的重組.......................................19
3.3 反向路由樹協定的演算法.............................20
3.3.1 建立反向路由樹演算法.................................21
3.3.2 動態重組反向路由樹的演算法.......................23
第四章 模擬與分析.................................................26
4.1 NS-2的模擬環境..........................................26
4.2 模擬程式的架構 ..........................................27
4.2.1 NS-2的架構.................................................27
4.2.2 RRT的Pseudocode......................................31
4.3 模擬結果.....................................................45
4.3.1 Packet Loss Ratio........................................45
4.3.2 Average Packet Delay..................................47
4.3.3 Reconfiguration Time....................................48
4.3.4 Throughput...................................................50
4.3.5 電量消耗......................................................51
4.3.6 時間複雜度...................................................54
第五章 結論與未來工作............................................57
5.1 結論.............................................................57
5.2 未來工作.......................................................58
參考文獻....................................................................59
Index ..........................................................................64
參考文獻 References
[1] IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks, IEEE 802 LAN/MAN Standards Committee, Feb. 6, 2012.
[2] K. S. Kwak, S. Ullah, and N. Ullah, “An Overview of IEEE 802.15.6 Standard,” 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Rome, Nov. 7-10, 2010.
[3] S. Gonz´alez-Valenzuela, M. Chen, and V. C. M. Leung, “Mobility Support for Health Monitoring at Home Using Wearable Sensors,” IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 4, pp. 539-549, July 2011.
[4] Y. Hovakeemian, K. Naik, and A. Nayak, “A Survey on Dependability in Body Area Networks,” 2011 5th International Symposium on Medical Information and Communication Technology (ISMICT), Montreux, Mar. 27-30, 2011.
[5] A. Pantelopoulos and N.G. Bourbakis, “A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.40, no. 1, pp. 1-12, Jan. 2010.
[6] T. Ma, P. L. Shrestha, M. Hempel, D. Peng, H. Sharif, and H. Chen, “Assurance of Energy Efficiency and Data Security for ECG Transmission in BASNs,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 1041-1048, Apr. 2012.
[7] S. Bao, C. C. Y. Poon, Y. Zhang, and L. Shen, “Using the Timing Information of Heartbeats as an Entity Identifier to Secure Body Sensor Network,” IEEE Transactions on Information Technology in Biomedicine, vol. 12, no. 6, pp. 772-779, Nov. 2008.
[8] J. Abouei, J.D. Brown, K. N. Plataniotis, and S. Pasupathy, “Energy Efficiency and Reliability in Wireless Biomedical Implant Systems,” IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 3, pp. 456-466, May 2011.
[9] A. Seyedi and B. Sikdar, “Energy Efficient Transmission Strategies for Body Sensor Networks with Energy Harvesting,” IEEE Transactions on Communications, vol. 58, no. 7,pp. 2116-2126, July 2010.
[10] L. Wang, C. Goursaud, N. Nikaein, L. Cottatellucci, and J. Gorce, “Cooperative Scheduling for Coexisting Body Area Networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 1, pp. 123-133, Jan. 2013.
[11] S. H. Cheng and C. Y. Huang, “Coloring-Based inter-WBAN Scheduling for Mobile Wireless Body Area Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 2, pp. 250-259, Feb. 2013.
[12] E. B. Hamida, R. D Errico, and B. Denis, “Topology Dynamics and Network Architecture Performance in Wireless Body Sensor Networks,” 2011 IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, Feb. 7-10, 2011.
[13] M. Bykowski, D. Tracey, B. Graham, N. Timmons, and J. Morrison, “A Schema for the Selection of Network Topology for Wireless Body Area Networks,” IEEE on Radio and Wireless Symposium (RWS), Phoenix, Jan. 16-19, 2011.
[14] H. Li and J. Tan, “Heartbeat-Driven Medium-Access Control for Body Sensor Networks,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 1, pp. 44-51, Jan. 2010.
[15] L. Wang, C. Goursaud, N. Nikaein, L. Cottatellucci, and J. Gorce, “Cooperative Scheduling for Coexisting Body Area Networks,” IEEE Transactions on Wireless Communication, vol. 12, no. 1, pp. 123-133, Jan. 2013.
[16] R. Kazemi, R. Vesilo, E. Dutkiewicz, and R. Liu, “Dynamic Power Control in Wireless Body Area Network Using Reinforcement Learning with Approximation,” 2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Toronto, Sep. 11-14, 2011.
[17] S. Nabar, J. Walling, and P. Poovendran, “Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization,” 2010 International Conference on Body Sensor Networks (BSN), Singapore, June 7-9, 2010.
[18] M. Ozgoren, M. Sakar, and A. Oniz, “Contact/Non-Contact Sensor Mesh for Body Temperature Monitoring,” 2010 15th National Biomedical Engineering Meeting (BIYOMUT), Antalya, Apr. 21-24, 2010.
[19] F. Derogarian, J. C. Ferreira, and V. M. G. Tavares, “Design and Implementation of Circuit for Mesh Networks with Application in Body Area Networks,” 2012 15th Euromicro Conference on Digital System Design (DSD), Izmir, Sep. 5-8, 2012.
[20] D. V. Srihari, T. R. Kumar, V. K. Reddy, and K. Naresh, “Comparative Study and Design of a Multi-hop Protocol in a Wireless Body Area Network towards Energy Efficiency,” International Journal of Computer Information Systems, vol. 3, no. 2, pp.116-130, Nov. 2, 2011.
[21] H. Chebbo, S. Abedi, T.A. Lamahewa, D.B. Smith, D. Miniutti, and L. Hanlen, “Reliable Body Area Networks Using Relays: Restricted Tree Topology,” 2012 International Conference on Computing, Networking and Communications (ICNC), Maui, Jan. 30, 2012.
[22] R. Annur, N. Wattanamongkhol, S. Nakpeeerayuth, and L. Wuttisittikulkij, “Applying the Tree Algorithm with Prioritization for Body Area Networks,” 2011 10th International Symposium on Autonomous Decentralized Systems (ISADS), Tokyo, Mar. 23-27, 2011.
[23] N. Ababneh, N. Timmons, J. Morrison, and D. Tracey, “Energy-Balanced Rate Assignment and Routing Protocol for Body Area Networks,” 2012 International Conference on Advanced Information Networking and Applications Workshops (WAINA), Fukuoka, Mar. 26-29, 2012.
[24] A. M. Ortiz, N. Ababneh, N. Timmons, and J. Morrison, “Adaptive Routing for Multihop IEEE 802.15.6 Wireless Body Area Networks,” 2012 20th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Sep. 11-13, 2012.
[25] M. M. Alam, O. Berder, D. Menard, and O. Sentieys, “TAD-MAC: Traffic-Aware Dynamic MAC Protocol for Wireless Body Area Sensor Networks,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 109-119, Mar. 2012.
[26] N. Ababneh, N. Timmons, and J. Morrison, “Cross-layer Optimization Protocol for Guaranteed Data Streaming over Wireless Body Area Networks,” 2012 8th International Wireless Communications and Mobile Computing Conference, Limassol, Aug. 2012.
[27] C. S. Lin and P. J. Chuang, “Energy-efficient Transmission in Wireless Body Area Networks,” 2012 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), New Taipei, Nov. 4-7, 2012.
[28] L. Liang, Y. Ge, G. Feng, W. Ni, and A. A. P. Wai, “Experimental Study on Adaptive Power Control Based Routing in Multi-hop Wireless Body Area Networks,” 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, Dec. 3-7, 2012.
[29] M. Quwaider and S. Biswas, “On-body Packet Routing Algorithms for Body Sensor Networks,” 2009 First International Conference on Networks and Communications (NETCOM 2009), Chennai, Dec. 27-29, 2009.
[30] C. H. Wu and Y. C. Tseng, “Data Compression by Temporal and Spatial Correlations in a Body-Area Sensor Network: A Case Study in Pilates Motion Recognition,” 2011 IEEE Transactions on Mobile Computing, vol. 10, no. 10, pp. 1459-1472, Oct. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code