Responsive image
博碩士論文 etd-0808114-204420 詳細資訊
Title page for etd-0808114-204420
論文名稱
Title
內門與枋山地區海相玄武岩之岩象與地球化學特性
Petrographic and geochemical characteristics of marine basalts from Neimen and Fangshan areas
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-24
繳交日期
Date of Submission
2014-09-09
關鍵字
Keywords
膨潤石、綠泥石、細碧岩、熱液蝕變、微量元素、Sr-Nd同位素、柯綠泥石
trace elements, Sr-Nd isotopic, hydrothermal alteration, smectite, corrensite, spilite, chlorite
統計
Statistics
本論文已被瀏覽 5732 次,被下載 45
The thesis/dissertation has been browsed 5732 times, has been downloaded 45 times.
中文摘要
台灣西部麓山帶第三紀沈積岩中的基性火山岩透鏡體大都已經遭受到蝕變作用,而生成綠泥石、柯綠泥石和膨潤石等綠泥石質黏土礦物。本研究基於岩象學和礦物化學分析的基礎,透過分析內門(NM)與枋山(FS)地區火山岩的微量元素、稀土元素與同位素的特性探討(1)岩漿庫來源與構造的資訊,(2)樣品間微量元素、稀土元素與同位素的差異對應到蝕變程度的關係,(3)水岩反應時的元素交換,(4)次生黏土與原生礦物間微量元素的分佈特性。內門火山岩之產狀為夾於南莊層砂頁岩層之透鏡體,而枋山溪流域並未發現火山岩透鏡體的露頭,僅於溪床上發現火山岩滾石。內門玄武岩皆有斑晶組織,岩性為鹼性玄武岩,斑晶由普通輝石、橄欖石為主,由於曾受過蝕變作用,所有的橄欖石皆有部份被次生黏土礦物所取代,其中取代橄欖石的黏土礦物可細分四種產狀:裂隙中心細脈(VC)、裂隙充填(V)、雲母狀黏土(MA)、毛氈狀黏土(F),普通輝石斑晶則無明顯蝕變的現象,基質內則包含普通輝石、斜長石、鹼性長石、鈦磁鐵礦、鈦鐵礦、磷灰石,以及取代基質之黏土(Mrx, 綠泥石+膨潤石)。枋山的樣品具杏仁孔組織,蝕變程度較高,皆已細碧岩化,其原生礦物皆被取代,僅保留原生組織,難以辨認原生礦物種類,杏仁孔內主要礦物為綠泥石、方解石、白雲石、石英,基質內主要礦物為鈉長石、綠泥石、柯綠泥石、金紅石、磷灰石,此外尚有鉻鐵礦、黃鐵礦、黃銅礦、閃鋅礦、獨居石、岩鹽、磷鋁鈰石(florencite, (Ce, La, Sr)Al3(PO4)2(OH)6)等微量礦物零星分佈。內門與枋山的熱燒失量(L.O.I.)分別為3.20~4.22與4.71~11.52,除了Li、Cs、Rb、Sr與Ti等受蝕變影響的元素,內門與枋山的微量元素與稀土元素趨勢接近洋島型玄武岩(OIB)。根據Zr-Ti-Y與Hf-Th-Th的構造投圖,內門與枋山的噴發環境為板內玄武岩。內門玄武岩的Sr-Nd同位素接近新鮮樣品,而枋山細碧岩的87Sr/86Sr偏離了地函演化的趨勢線(mantle array),暗示了與枋山反應的流體可能為海水,且可能於火成作用時有受到地殼特徵端成份的污染。LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry)微量元素分析顯示:斜輝石之LREE與不相容元素均為虧損,橄欖石除富集Ni和Co外幾乎不含不相容元素,基質之微量元素則與全岩相近。黏土礦物的Li和Cs有很明顯的富集現象,其中較靠近橄欖石的雲母狀黏土(MA)之微量元素含量很低且特徵極接近橄欖石,顯示其與流體的元素交換非常少,反之較靠近基質或裂隙的毛氈狀黏土(F)與裂隙充填黏土(V+Vc)具有較高的微量元素含量,顯示其和流體有較多的元素交換。基質黏土礦物(Mrx)比取代橄欖石之黏土礦物具較高之微量元素含量,反映出(1)基質礦物能夠提供較多的微量元素,(2)基質中的裂隙與粒間提供流體傳輸的管道,形成較高水/岩比的蝕變條件。LA-ICP-MS的蝕變黏土與原岩間微量元素特徵的一致性,顯示黏土礦物對於蝕變前後微量元素的差異有很重要的影響,因此本研究中Li、Cs、Pb的富集程度與Sr、Rb、Ba的虧損程度,可以當作蝕變程度的參考指標。
Abstract
Lenticular mafic volcanic rocks, intercalated with Tertiary sedimentary rocks in the Western foothills of Taiwan, have been altered, and transformed into chloritic clay minerals such as chlorite, corrensite and smectite. This study, based on the petrography and mineral chemical analysis ,use the trace elements, rare earth elements and isotopes of the volcanic rocks from Neimen and Fangshan areas to investigate the (1) the information of magmatic source and tectonic. (2) relationship of trace elements, rare earth elements and isotope following the degree of alteration between the samples. (3) elements exchange of fluid-rock interaction. (4) distribution of trace elements between the primary and secondary clay minerals. Volcanic rocks of Neimen occur in the sandstone-shale interlayer of Nanchuang formation. In contrast, volcanic rocks in Fangshan River occur as rolling stone. Neimen basalts belong to alkaline basalts, with porphyritic texture. Phenocrysts compose of pyroxene and olivine. Due to alteration processes, olivine phenocrysts are partially replaced by secondary clay minerals which can be subdivided into vein center (VC), vein (V), mica-like(MA) fibrous(F) texture. Augite phenocrysts have not affected by significant alteration. The matrix contains augite, plagioclase, alkali feldspar, titanium magnetite, ilmenite, apatite and clay minerals such as chlorite and smectite, which replace from the matrix. The samples from Fangshan occur as amygdaloidal texture, and are characterized by spilitization features which indicate higher degree of alteration. Its primary minerals have been replaced, remaining the original texture, so it is difficult to identify the type of primary minerals. Amygdules compose of chlorite, calcite, dolomite and quartz. The matrix contains albite, chlorite, corrensite, rutile, apatite, with trace minerals such as chromite, pyrite, chalcopyrite, sphalerite, monazite, halite, and florencite ((Ce, La, Sr)Al3(PO4)2(OH)6). The loss on ignition(L.O.I.) for Neimen and Fangshan samples are 3.20 ~ 4.22 and 4.71 ~ 11.52. Excluding the elements affected by the alteration such as Li, Cs, Rb, Sr and Ti, the trace elements and REE trends in Neimen and Fangshan is closed to ocean island basalt (OIB). According to Zr-Ti-Y and Ha-Th-Ta diagram, the erupted environments of Neimen and Fangshan are intraplate basalts. Sr-Nd isotope system of Neimen is close to fresh samples, but the 87Sr/86Sr of Fangshan is deviated from mantle evolution trend (mantle array) suggesting the reaction fluid may be sea water and have been contaminated by crust endmember when the Igneous stage. LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) trace element analysis suggests that: both the LREE and incompatible elements of clinopyroxene are depleted. Excluding Ni and Co, olivine doesn’t enrich incompatible trace elements. The trends of matrix and whole rock are similar. Li and Cs in clay minerals are apparently enriched. The mica-like clay (MA) has very low trace elements abundance, similar to olivine, indicating little element exchange with the fluid. In contrast, the vein center clay(VC), vein clay (V) and fibrous clay (F) which close to the matrix and fissures, have higher trace elements abundance, indicating more element exchange with fluid. Clay mineral in matrix has more trace elements than the clays replaced from olivine, suggesting that (1) matrix can provide more trace elements (2) fissures and intergranular pores produce the channel to form a higher water / rock ratio to alteration. Altered clay measured by LA-ICP-MS consistent with the whole rock trace element characteristics, indicates clay minerals play an important role during the alteration. In this study the enrichment of Li, Cs, Pb and the depleted of Sr, Rb, Ba can be indicators of alteration.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iv
圖目錄 viii
表目錄 xi
縮寫表 xii
第一章 序論 1
1-1 前言 1
1-2 研究目的 2
第二章 地質背景 4
第三章 研究方法 9
3-1 實驗流程 9
3-2 實驗方法與步驟 10
3-2-1 樣品來源 10
3-2-2 岩石薄片製作與觀察 11
3-2-3 黏粒試片X光繞射分析 11
3-2-4 利用LA-ICP-MS針對岩石光片樣品各產狀進行分析 12
3-2-5 岩石磨粉與分離單物(輝石、基質) 12
3-2-6 溶樣(酸溶)與ICP-MS 14
3-2-7 管柱化學層析與TIMS 15
3-2-8 XRF全岩成份分析 16
3-2-9 鹼溶與ICP-OES 17
第四章 結果 18
4-1 內門岩象 18
4-2 枋山岩象觀察與XRD 22
4-2-1 FS2-2 22
4-2-2 FS2-3 26
4-2-3 FS3-1 30
4-2-4 FS3-2 34
4-2-5 FS4 38
4-2-6 FS5 43
4-3 地球化學分析結果 48
第五章 討論 66
5-1 原生礦物、組織與蝕變程度 66
5-2 黏土礦物 67
5-3 主要元素、微量元素、同位素與蝕變 69
第六章 結論 71
第七章 參考文獻 73
參考文獻 References
Arculus, R. J. (1987) the significance of source versus process in the tectonic controls of magma genesis. Journal of Volcanology and Geothermal Research, 32, 1-12.
Bischoff, J. L. and Dickson, F.W.(1979)Seawater-basalt interaction at 200°C and 500 bars Implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. Earth and Planetary Science Letters, 25, 385-397.
Bros, R., Stille, P., Gauthier-Lafaye, F., Weber, F. and Clauer, N. (1992) Sm-Nd isotopic dating of Proterozoic clay material: An example from the Francevillian sedimentary series, Gabon. Earth and Planetary Science Letters, 113, 207-218.
Cann, J. R. (1969) Spilites from the Carlsberg Ridge, Indian Ocean. Journal of petrology, 10(1), 1-19.
Chen, C. H., Chung, S. H., Hwang, H. H., Chen, C. H. and Chung, S.-L.(2001) Petrology and geochemistry of Neogene continental basalts and related rocks in northern Taiwan (III): Alkali basalts and tholeiites from Shiting-Yinko area. Western Pacific Earth Sciences, 1, p. 19–46.
Chen, J. C. (1981) Chemistry of basalts from South Cross-Island Highway, Taiwan. Proceedings of the Geological Society of China, 24, 130-133.
Chung, S. L., Sun, S. S., Tu, K., Chen, C. H. and Lee, C. Y. (1994) Late Cenozoic basaltic volcanism around the Taiwan strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension: Chemical Geology, 112, 1–20.
Chung, S. L., Jahn, B. M., Chen, S. J., Lee, T. and Chen, C. H. (1995a) Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere. Geochimica et Cosmochimica Acta, 59, 549–555.
Chung, S.-L., Yang, T. F., Lee, C.-Y. and Chen, C.-H. (1995b) The igneous provinciality in Taiwan: Consequence of continental rifting superimposed by Luzon and Ryukyu subduction systems: Journal of Southeast Asian Earth Sciences, 11, 73–80.
Clauer, N. and Chaudhuri, S. (1995) Clays in Crustal Environments. Isotope dating and tracing. Springer Verlag, Heidelberg. 359.
Fiala, F. (1974) Some notes on the problem of spilites. Springer Berlin Heidelberg, 9-22.
Floyd, P. A. (1977) Geochemical characteristics of Upper Palaeozoic volcanics from S.W. England. J. Geol. Soc. London, 133, 405-406.
Hajash, A. (1975). Hydrothermal processes along mid-ocean ridges: an experimental investigation. Contributions to Mineralogy and Petrology, 53, 205-226.
Hart, S.R. and Dunn, T. (1993) Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology 113, 1-8.
Hofmann A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229.
Juang, W.S. and Chen J.C. (1999) The nature and origin of Penghu basalts:a review. Bulletin of the central geology survey, 12, 147-200.
Kitagawa, H., Kobayashi, K., Makishima, A. and Nakamura, E. (2008) Multiple pulses of the mantle plume: evidence from Tertiary Icelandic lavas. Journal of Petrology, 1-32.
Lahaye, Y., Arndt, N., Byerly, G. and Chauvel, G. (1995) The influence of alteration on the trace element and Nd in komatiites, Chemical Geolog, 126, 43-64.
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A.and Zanettin, A, B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Petrol., 27, 445–450.
Liou, J. G. (1981) Recent high CO2 activity and Cenozoic progressive metamorphism in Taiwan. Memoir of the Geology Society of China, 4, 551-581.
Schidlowski M.(1969)Spilite and the basal tables volcanism. Natural sciences, Bd. 56, No. 10, P. 488-493.
Menzies M. A., Rogers N., Tindle A. and Hawkesworth C. J. (1987) Metasomatic and enrichment processes in lithospheric peridototes: an effect of asthenosphere-lithosphere interaction. In Mantle Metasomatism (ed. M. A. Menzies and C. J. Hawkesworth), 313-361.
Narebski, W. (1974) A statistical study of specific petrochemical features of some spilitic rock series. In Spilites and Spilitic Rocks, 127-159.
Nesse, W. D. (1991) Introduction to Optical Mineralogy 2nd edition, Oxford University Press, 335p.
Ohr, M., Halliday, A.N. and Peacor, D.R. (1991) Sr and Nd isotopic evidence for punctuated clay diagenesis, Texas Gulf Coast. Earth and Planetary Science Letters, 105, 110-126.
Pearce, J.A. and Cann, J.R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. earth and planetary science letter, 19, 290-300.
Rhodes, J. M. and Vollinger, M. J. (2004). Composition of basaltic lavas sampled by phase‐2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types. Geochemistry, Geophysics, Geosystems, 5(3), 1-38.
Robinson, D., Schmidt, S. Th. and de Zamora, S. A. (2002) Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasites. Journal of Metamorphic Geology, 20, 67-174.
Schiffman, P. and Fridleisson, G. O. (1991) The smectite to chlorite transition in drillhole NJ-15, Nesjavellir Geothermal Field, Iceland: XRD, BSE and electron microprobe investigations. Journal of Metamorphic Geology, 9, 679-696.
Seyfried, W. E., Mottl, M. J., and BlSchoff, J. L. (1978). Seawater/basalt ratio effects on the chemistry and mineralogy of spilites from the ocean floor. Nature 275, 211 – 213.
Seyfried W.E. and Bischoff J.L. (1979) Low temperature basalt alteration by sea water: an experimental study at 70°C and 150°C. Geochim. Cosmochimi. Acta, 43., 1937-1947.
Shau, Y.H., Peacor, D.R. and Essene, E.J. (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contributions to Mineralogy and Petrology,105, 123-142.
Shau, Y. H. and Peacor, D. R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 4504 B, Leg 83 – a TEM and AEM study. Contributions to Mineralogy and Petrology, 112(1), 119-133.
Shaw, D. M., Vatin-Pérignon, N. and Muysson J.R. (1997) Lithium in spilites. Geochimica et Cosmochimica Acta, 1977, 41, 1601-1607.
Smith, A.D. and Lewis, C. (2007) Geochemistry of Metabasalts and Associated Metasedimentary Rocks from the Lushan Formation of the Upthrust Slate Belt, South-Central Taiwan. International Geology Review, 49, 1–13.
Smith, R. E. (1974). The production of spilitic lithologies by burial metamorphism of flood basalts from the Canadian Keweenawan, Lake Superior. In Spilites and spilitic rocks, 4, 403-416.
Środoń, J. (1999) Nature of Mixed-Layer Clays and Mechanisms of their Formation and Alteration. Annual Review of Earth and Planetary Sciences, 27, 19-53.
Sukheswala, R. N. (1974). Gradation of tholeiitic Deccan basalt into spilite, Bombay, India. In Spilites and spilitic rocks, 4, 229-250.
Sun, S. S. and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London, Special Publication, 42, 313–345.
Tu, K., Flower, M.F.J., Carlson, R.W., Zhang, M. and Xie, G. (1991) Sr, Nd, and Pb isotopic compositions of Hainan basalts south China: implications for a subcontinental lithosphere Dupal source. Geology 19, 567–569.
Tu, K., Flower, M.F.J., Carlson, R.W., Xie, G.H., Chen, C.Y. and Zhang, M. (1992) Magmatism in the South China Basin: Isotopic and trace element evidence for an endogenous Dupal mantle component. Chem. Geol., 97, 47–63.
Uysal, I.T. and Golding, S.D. (2003) Rare earth element fractionation in authigenic illite–smectite from Late Permian clastic rocks, Bowen Basin, Australia:implications for physico-chemical environments of fluids during illitization, Chemical Geology, 193 ,167-179.
Vallance, T. G. (1974) Spilitic degradation of a tholeiitic basalt. Journal of Petrology, 15(1), 79-96.
Velde, B. (1985) Clay Minerals: A physico-chemical explanation of their occurrence. Development in Sedimentology. LO, Elsevier, Amsterdam.
Wilson, B.M. (1989) Igneous Petrogenesis. Unwin Hyman, London, 466 p.
Wood, D. A., Joron, J.L. and Truil, M. (1979) A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45, 326-336.
Yang, H. Y., Shau, Y. H.and Fann, M. J. (1983). Petrology of spilite from Shihmen Reservoir area, northern Taiwan. Memoir of the Geological Society of China, 5, 97-116.
Yang, H. Y. (1988) Hydrothermally altered teschenite from Hsiungkungshan, Taipeihsien, northern Taiwan. Proceedings of the Geological Society of China, 31( 2), 19-42.
Yen, T. P. (1956) Neogene basaltic activities in western Taiwan and their stratigraphic significance. Formosan Sci., 10, 1, 23–26. 59.
Yen, T. P., Tzou, Y. H. and Lin, W. H.(1984)Subsurface geology of the region of the Tatun Volcano Group.Petro. Geol. Taiwan 20, 143-154.
Zindler, A. and Hart, S. R. (1986) Chemical geodynamics: Annual Reviews of Earth and Planetary Science, 14, 493–571.
Zou H., Zindler A., Xu X. and Qi Q. (2000) Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chemical Geology, 171, 33–47.
耿文溥(1974)台灣西南部之南莊層,台灣省地質調查所彙刊,第二十四號,75-79。
陳正宏(1990)台灣之火成岩,經濟部中央地質調查所,185 頁。
郭景聖(1984)寶來地區細碧岩之地球化學及同位素研究,國立台灣大學海洋研究所碩士論文,96 頁。
曾真、藍晶瑩(1997a)銣-鍶(Rb-Sr)定年法,地質(Ti-Chih); 第16卷, 第1-2期, 47-62頁
曾真、藍晶瑩(1997b)釤-釹(Sm-Nd)定年法,地質(Ti-Chih); 第16卷, 第1-2期, 63-77頁
郭春滿(2003)中國西北部柴達木盆地北緣榴輝岩之地球化學特性,國立成功大學地球科學所碩士論文,共109頁。
賀囿華(2010)台灣第三紀玄武質岩中次生綠泥石質礦物的特徵與成因,國立中山大學海洋生物科技暨資源所碩士論文,225頁。
莊雅芬(2012)高雄內門玄武岩之蝕變作用與次生礦物之研究,國立中山大學海洋生物科技暨資源所碩士論文, 90頁。
莊文星(1992)台灣之火山活動與火成岩,國立自然科學博物館,300頁。
蕭炎宏(2012)台灣地區蝕變玄武岩中黏土礦物之岩象與地球化學特性。國科會專題研究計畫成果報告,14頁。
何春蓀(1986)台灣地質概論—台灣地質圖說明書,第二版,經濟部中央地質調查所,182頁。
宋國城、林偉雄(1993)五萬分之一臺灣地質圖幅說明書—枋寮圖幅,經濟部中央地質調查所。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code