Responsive image
博碩士論文 etd-0808115-142725 詳細資訊
Title page for etd-0808115-142725
論文名稱
Title
新型多載波分碼多重接取系統之上鏈連續干擾消除方法
A Successive Interference Cancellation Method for Novel MC-CDMA Uplink
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-28
繳交日期
Date of Submission
2015-09-08
關鍵字
Keywords
錯誤更正碼、多重存取干擾、連續干擾消除方法、稀疏高斯序列、多載波分碼多工系統
MC-CDMA, sparse Gaussian integer sequence (SGIS), MAI, SIC, Error Correcting Code
統計
Statistics
本論文已被瀏覽 5690 次,被下載 24
The thesis/dissertation has been browsed 5690 times, has been downloaded 24 times.
中文摘要
多 載 波 分 碼 多 工 系統(Multi-Carrier Code Division Multiple Access, MC-CDMA)應用在上鏈傳輸中會因為使用者經過頻率選擇性衰落通道(Frequency Selective Fading Channel)而造成展頻碼之間的正交性破壞進而產生多重存取干擾(Multiple Access Interference, MAI)的問題。於是一個新型MC-CDMA利用頻域等效的完美高斯整數序列(Perfect Gaussian Integer Sequences, PGIS)產生展頻碼的特性來避免MAI。然而,其頻率使用效率會因此降低。因此在本篇論文裡,我們將採用連續干擾消除(Successive Interference Cancellation, SIC)的方法去改善頻譜使用效率,並且我們會在此提出訊號對干擾雜訊比(Signal-to-Interference-plus-Noise Ratio, SINR)的推導。在模擬結果中我們可以發現,若在傳送相同的資料下,其配合我們設計的SIC在疊代兩次之後的表現上其錯誤率在10-5的時候和沒有MAI的線好上2dB。
Abstract
Multi-carrier code division multiple access (MC-CDMA) systems experience serious multiple access interference (MAI) in uplink transmission because the orthogonality among codes is destroyed by the frequency-selective fading channels. A novel MC-CDMA system is proposed to avoid MAI by adopting the frequency-domain equivalents of the perfect Gaussian integer sequences as the spreading codes. However, the spectrum efficiency is decreased. In this thesis, we propose successive interference cancellation (SIC) method to improve the spectrum efficiency. Moreover, we derive the signal-to-interference-plus-noise ratio of the proposed method. Simulation experiments demonstrate that the BER performance of the proposed SIC method with employing the convolution code after performing two iterations for quadrature phase-shift keying is 2 dB better than that of the novel MC-CDMA systems without any MAI at a bit-error-rate of 10-5.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖表 vii
第一章 概論 1
1.1 研究動機 2
1.2 論文架構 3
第二章 系統模型 4
2.1 正交分頻系統之基本架構 4
2.2 多載波分碼多重存取 8
第三章 轉換矩陣設計 11
3.1 展頻碼矩陣與轉換矩陣之關係 11
3.2 使用高斯整數完美序列設計時域的展頻矩陣之產生方法 12
第四章 新多載波分碼多工上鏈系統設計與系統效能 14
4.1 系統架構 14
4.2 連續干擾消除方法 19
第五章 系統效能分析 23
5.1 訊號對干擾加雜訊比分析 23
第六章 模擬結果與討論 30
6.1 MAI與MAI-free的效能比較 30
6.2 提出個別使用者訊號處理架構 31
6.3 加入連續干擾消除方法後的BER表現 32
6.4 錯誤更正碼 34
第七章 結論 37
參考文獻 38
中英對照表 44
縮寫對照表 50
參考文獻 References
[1] H. J. Li and T.Y. Liu, “Comparison of beamforming techniques for W-CDMA communication system,” IEEE Trans. Veh. Technol., vol. 52, no. 4, pp.752–760, July 2003.
[2] X. J. Zeng and Z. L. Hong, “Design and implementation of a turbo decoder for 3G W-CDMA systems,” IEEE Trans. Consum. Electron., vol. 48, no. 2, pp.284–291, May 2002.
[3] F. Y. Han, J. M. Wu, T. S. Horng, and C. C. Tu, “A rigorous study of package and PCB effects on W-CDMA upconverter RFICs,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp.3793–3804, Oct. 2006.
[4] S. Kucera and H. Claussen, “Uplink-oriented deployment guidelines and auto-configuration algorithms for co-channel W-CDMA heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp.3752–3763, July 2015.
[5] W. Cooper, J. R. Zeidler, and S. McLaughlin, “Performance analysis of slotted random access channels for W-CDMA systems in Nakagami fading channels,” IEEE Trans. Veh. Technol., vol. 51, no. 3, pp.411–424, May 2002.
[6] J. Huang, R. Y. Yao, Y. Bai, and S. W. Wang, “Performance of a mixed-traffic CDMA2000 wireless network with scalable streaming video,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 10, pp.973–981, Oct. 2003.
[7] S. Sarkar, B. K. Butler, and E. G. Tiedemann, “Phone standby time in cdma2000: the quick paging channel in soft handoff,” IEEE Trans. Veh. Technol., vol. 50, no. 5, pp. 1240–1249, Sept. 2001.
[8] W. Wang, T. C. Liang, and W. S. Leon, “Frequency domain equalization and interference cancellation for TD-SCDMA downlink in fast time-varying environments,” IEEE Trans. Veh. Technol., vol. 57, no. 1, pp.648–653, Jan. 2008.
[9] Z. Wu, A. Huang, and H. H. Chen, “Scrambling code planning in TD-SCDMA cellular systems” IEEE Trans. Veh. Technol., vol. 63, no. 1, pp.484–489, Jan. 2014.
[10] S. Liu, Z. Huang, H. Luo, Y. Liu, and J. Gao, “Spreading code design for downlink space-time-frequency spreading CDMA,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2933–2946, Sept. 2008.
[11] J. H. Wen, J. S. Jhou, and C. P. Li, “Optical spectral amplitude coding CDMA systems using perfect difference codes and interference estimation,” IEEE Proc. Optoelectron., vol. 153, no. 4, pp. 152–160, Aug. 2006.
[12] X. Peng, K. B. Peng, Z. Lei, F. Chin, and C. C. Ko, “Two-layer spreading CDMA: an improved method for broadband uplink transmission,” IEEE Trans. Veh. Technol., vol. 57, no. 6, pp.3563–3577, Nov. 2008.
[13] W. Choi, J. G. Andrews, and R. W. Heath, “Multiuser antenna partitioning for cellular MIMO–CDMA systems,” IEEE Trans. Veh. Technol., vol. 56, no. 5, pp. 2448–2456, Sept. 2007.
[14] J. D. Chen, F. B. Ueng, J. C. Chang, and H. Su, “Performance analyses of OFDM–CDMA receivers in multipath fading channels,” IEEE Trans. Veh. Technol., vol. 58, no. 9, pp. 4805–4818, Nov. 2009.
[15] K. C. Lee, S. H. Wang, C. P. Li, H. H. Chang, and H. J. Li, “Adaptive resource allocation algorithm based on cross-entropy method for OFDMA systems,” IEEE Trans. Broadcast., vol. 60, no. 3, pp. 524–531, Sept. 2014.
[16] J. Park, P. Pawełczak, P. Grønsund, and D. Cabric, “Analysis framework for opportunistic spectrum OFDMA and its application to the IEEE 802.22 standard,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2271–2293, June 2012.
[17] H. Li and H. Liu, “An analysis of uplink OFDMA optimality,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2972–2983, Aug. 2007.
[18] J. Zhang, L. Luo. Ueng, and Z. Shi, “Quadrature OFDMA systems based on layered FFT structure,” IEEE Trans. Commun., vol. 57, no. 3, pp. 850–860, Mar. 2009.
[19] S. H. Wang, J. C. Sie, C. P. Li, and Y. F. Chen, “Low Complexity Transmitter Architectures for SFBC MIMO-OFDM Systems,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1712–1718, June 2012.
[20] C. P. Li, S. H. Wang, and K. C. Chan “Design and implementation of tiny-WiMAX connection manager (t-WCM) for specific purposed devices,” IEEE Trans. Consum. Electron., vol. 55, no. 4, pp. 1825–1831, Nov. 2009.
[21] S. Kim, I. Ryo, and H. Joh, “Design and implementation of tiny-WiMAX connection manager (t-WCM) for specific purposed devices,” IEEE Trans. Consum. Electron., vol. 55, no. 4, pp. 1825–1831, Nov. 2009.
[22] Q. Wang, C. Hou, and Y. Lu, “An experimental study of WiMAX-based passive radar,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3502–3510, Dec. 2010.
[23] S. Jeon and Y. Kim, “WiMAX multicast/broadcast services support in home environments,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1333–1339, Aug. 2010.
[24] U. Ladebusch and C. A. Liss, “Terrestrial DVB (DVB-T): a broadcast technology for stationary portable and mobile use,” Proc. IEEE, vol. 94, no. 1, pp. 183–193, Jan. 2006.
[25] U. H. Reimers, “DVB-the family of international standards for digital video broadcasting,” Proc. IEEE, vol. 94, no. 1, pp. 173–182, Jan. 2006.
[26] J. Lei, M. A. Vázquez-Castro, and T. Stockhammer, “Link-layer FEC and cross-layer architecture for DVB-S2 transmission with QoS in railway scenarios,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 4265–4276, Oct. 2009.
[27] G. Wang, H. Zhang, M. Lu, C. Zhang, T. Jiang, and G. Guo, “Low-cost low-power ASIC solution for both DAB+ and DAB audio decoding,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 4, pp. 913–921, Apr. 2014.
[28] R. Schiphorst, N. A. Moseley, A. C. Aarden, M. Heskamp, and C. H. Slump, “A T-DAB field trial using a low-mast infrastructure,” IEEE Trans. Broadcast., vol. 54, no. 3, pp. 356–370, Sept. 2008.
[29] J. Everts, F. Krismer, J. V. D. Keybus, J. Driesen, and J. W. Kolar, “Optimal ZVS modulation of single-phase single-stage bidirectional DAB AC–DC converters,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4265–4276, Aug. 2014.
[30] Q. M. Rahman and A. B. Sesay, “Noncoherent MT-CDMA system with post-detection diversity combining,” Can. J. Elect. Comput. Eng., vol. 28, no. 2, pp. 81–88, Apr. 2003.
[31] C. W. Chang and C. C. Kuo, “A joint power control and interference avoidance code assignment strategy for downlink MC-DS-CDMA with 2D spreading,” IEEE Trans. Wireless Commun., vol. 8, no. 11, pp. 5582–5591, Nov. 2009.
[32] C. Xu, B. Hu, L. L. Yang, and L. Hanzo, “Ant-colony-based multiuser detection for multifunctional-antenna-array-assisted MC-DS-CDMA systems,” IEEE Trans. Veh. Technol., vol. 57, no. 1, pp. 658–663, Jan. 2008.
[33] H. Steendam and M. E. Moeneclaey, “The sensitivity of downlink MC-DS-CDMA to carrier frequency offsets,” IEEE Trans. Commun. Lett., vol. 5, no. 5, pp. 4265–4276, May 2001.
[34] W. W. Hu, S. H. Wang, and C. P. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6074–6079, Nov. 2012.
[35] A. S. Ling and L. B. Milstein ,“Trade-off between diversity and channel estimation errors in asynchronous MC-DS-CDMA and MC-CDMA,” IEEE Trans. Commun., vol. 56, no. 4, pp. 584–597, Apr. 2008.
[36] H. Zhang, Y. Li, and Y. Y. Wu, “Practical considerations on channel estimation for uplink MC-CDMA systems,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4384–4392, Nov. 2008.
[37] M. F. Madkour, S. C. Gupta, and Y. P. E. Wang, “Successive interference cancellation algorithms for downlink W-CDMA communications,” IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 169–177, Jan. 2002.
[38] A. S. Gupta and A. Singer, “Successive interference cancellation using constellation structure,” IEEE Trans. Signal Process., vol. 55, no. 12, pp. 5716–5730, Dec. 2007.
[39] H. Li, C. Wu, D. Yu, Q. S. Hua, and F. C. M. Lau, “Aggregation latency-energy tradeoff in wireless sensor networks with successive interference cancellation,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 11, pp. 2160–2170, Nov. 2013.
[40] P. Li, R. C. D. Lamare, and R. Fa, “Multiple feedback successive interference cancellation detection for multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2434–2439, Aug. 2011.
[41] L. Song, R. C. D. Lamare, and A. G. Burr, “Successive interference cancellation schemes for time-reversal space-time block codes,” IEEE Trans. Veh. Technol., vol. 57, no. 1, pp. 642–648, Jan. 2008.
[42] M. Wildemeersch, Q. S. Quek, M. Kountouris, A. Rabbachin, and C. H. Slump, “Successive interference cancellation in heterogeneous networks,” IEEE Trans. Commun., vol. 62, no. 12, pp. 4440–4453, Dec. 2014.
[43] S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-Complexity precoded OFDM system with Reduced PAPR,” IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1366–1376, Mar. 2015.
[44] R. M. Hierons and H. Ural, “Optimizing the length of checking sequences,” IEEE Trans. Comput., vol. 55, no. 5, pp. 618–629, May 2006.
[45] S. C. Kim and B. G. Lee, “A theory on sequence spaces and shift register generators,” IEEE Trans. Commun., vol. 62, no. 12, pp. 609–618, May 1996.
[46] K. K. Chawla and D. V. Sarwate, “Acquisition of PN sequences in chip synchronous DS/SS systems using a random sequence model and the SPRT,” IEEE Trans. Commun., vol. 42, no. 6, pp. 2325–2334, June 1994.
[47] C. P. Li, S. H. Wang, and C. L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code