Responsive image
博碩士論文 etd-0808116-112744 詳細資訊
Title page for etd-0808116-112744
論文名稱
Title
利用多量子核磁共振和鈉離子取代法探討Nafion 117的結構和動態
Investigation of the structure and dynamics of Nafion 117 with multi-quantum NMR and sodium substitution
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-23
繳交日期
Date of Submission
2016-09-08
關鍵字
Keywords
NMR鬆弛、多量子濾波、四極核、核磁共振、離子取代、Nafion、質子交換膜燃料電池
NMR, multi-quantum filtering, nafion, ion substitution, quadrupolar nuclei, proton exchange membrane fuel cell
統計
Statistics
本論文已被瀏覽 5676 次,被下載 312
The thesis/dissertation has been browsed 5676 times, has been downloaded 312 times.
中文摘要
直接甲醇燃料電池中的質子交換膜是左右電池運作效能的重要組件,目前使用最多的是全氟磺酸高分子電解質Nafion。深入地探究Nafion結構、分子動態和質子傳導機制等問題,對於進一步改善薄膜在電池工作時的效能,或開發新型態質子交換膜而言十分重要。為了實現這個目的,利用陽離子部分或全部取代Nafion內磺酸根上的質子,可以製備出一系列物理/化學性質類似但不全同的薄膜材料,然後對這些材料做系統的研究,可以獲得許多額外的從微觀,介觀到巨觀尺度上的結構和動態資訊。之前的一些文獻已經暗示,有別於單一離子全取代系統,部分離子取代的混合系統將可以提供更多額外的交互作用力資訊,有助於更深入地理解Nafion內複雜的結構與多樣的動態環境,但是目前尚無利用此一方法進行系統研究的報導。由於鈉原子核是四極核,對局域環境電場強度梯度敏感,本工作利用具有自旋量子數I=3/2的四極核的鈉離子部分取代磺酸根上的質子,製造混合離子系統,使鈉離子既是取代離子,也同時充當Nafion內奈米孔洞和水通道結構的高靈敏探針。進一步,利用鈉離子(23Na)是四極核這一事實,可以同時記錄其單量子,雙量子,三量子以及零量子光譜和鬆弛,實現利用單個探針核即可獲取多種光譜和鬆弛資料之目標。利用這一前所未有的樣品製備策略和實驗設計,我們獲得質子與鈉核在不同取代率樣品的1H,23Na化學位移、23Na的有效電四極偶合常數、電場梯度張量不對稱參數、縱向鬆弛時間T1、各種量子躍遷(0-3階)鬆弛時間T2,n (n = 0, 1, 2, 3)。主要發現總結如下:1H 光譜類似液態光譜,說明Nafion孔洞內的水接近自由;而23Na各階量子光譜均有明顯寬化但不同於典型的粉末光譜,说明Nafion裡的高分子取向並不是完全平行也不是完全無規分佈,而是有類似液晶的優先取向分佈;當鈉取代氫越多,23Na單量子光譜增寬,表明其動性隨之下降,Nafion材料整體穩定性增加;1H的T1隨取代率改變呈現無規則特徵,但鈉的T1隨取代率改變呈現規則特徵,表明水探測到Nafion內各種微環境而鈉離子卻選擇性地探測孔道表面部分,因此提供互補的資訊;Nafion孔洞內的酸性降低。23Na各階量子光譜能給出的有效電四極偶合常數、電場梯度張量不對稱參數及化學位移張量各向異性的定量值,結果表明23Na的局部環境有較高的對稱性,證明磺酸根有旋轉且轉速隨鈉取代率增加而降低。比較不同階的多量子訊號產生及衰退的速率(例如,ZQ衰退速率大於DQ退速率,DQ衰退呈現多指數特徵)可以得知,Nafion孔洞的大小及形狀有較寬的分佈,Nafion的高分子骨架及側鏈有不同的動性,而且運動相關時間有一個寬的分佈。這些發現對於進一步理解Nafion的質子傳導機制,甲醇竄透機制以及機械性能等以及如何改進Nafion的性能提供了有價值的資訊。
Abstract
To better understand the structure, morphology, degradation and proton transport of Nafion, the mostly used proton exchange membrane in direct methanol fuel cells, a series of Nafion samples sodium-substituted Nafion samples were prepared where the proton on the sulfonic group was substituted with sodium by different degrees (0 - 1). Because 23Na is a spin-3/2 quadrupolar nucleus, it experiences the electric field gradient (EFG) at the nuclear position hence offering crucial structural and dynamic information of the material. Furthermore, the electric quadrupolar interaction facilitates multi-quantum transitions which can be utilized to provide additional structural and dynamic information. Therefore, with one spin species as the NMR probe, many spectra and relaxation rates can be acquired from a single sample. The 23Na zero-quantum (ZQ), single-quantum (SQ), double-quantum (DQ) and triple quantum (TQ) filtered spectra and relaxation rates enable us to measure the full EFG tensor as well as the chemical shift tensor of sodium spin in each sample. Based on this novel technique, supplemented by proton NMR, some interesting and valuable findings have been made as summarized on fully hydrated Nafion samples: (1) The proton spectra are rather narrow, indicating that the water in the samples is like free water; however, the 23Na spectra of all orders of quantum coherences (ZQ, SQ, DQ, TQ) all show clear broadening but different from typical solid state NMR powder spectrum, a direct evidence that the polymer matrix is neither like a single crystal not like a polycrystalline or powder, but more like a liquid crystal. (2) The more hydrogen is substituted by sodium, the broader the 23Na spectra, meaning less mobility and higher overall stability of Nafion. (3) While the 1H relaxation shows unappreciable trend with respect to substitution degree, the 23Na relaxation rates increases with substitution, consistent with the fact that protons in Nafion probe all kinds of microenvironments but sodium mostly reports the information on surfaces inside the material. Therefore, 1H and 23Na can provide supplementary information on Nafion. (4) The acidity inside Nafion pores and channels decreases with sodium substitution. (5) The values of EFG and chemical shift tensors as well as the relaxation rates enable us to estimate the size and shape of the nanopores and nanochannels inside Nafion, revealing important dynamic information such as the sulfonic group rotating around its symmetric axis with the rotational rate decreasing with the increase of sodium substitution. These findings are important for further understanding proton transport, methanol crossover, the mechanical properties of Naifon and how to improve its performance.
目次 Table of Contents
第一章 緒論 1
1-1 前言 1
1-2 燃料電池簡介 2
1-3質子交換膜Nafion簡介 8
第二章 相關研究文獻回顧 13
2-1 陽離子取代Nafion膜研究文獻 13
2-2 利用核磁共振儀研究Nafion相關文獻 17
2-3 多量子濾波核磁共振相關文獻 19
第三章 實驗部分 26
3-1 儀器與藥品 26
3-2 樣品前處理與製備 26
3-3 滴定法定量分析離子交換實驗 29
3-4 熱重分析實驗方法 30
3-5 NMR實驗脈衝序列與參數 30
3-6 NMR光譜模擬參數 35
第四章 結果與討論 36
4-1 鈉離子定量分析 36
4-2 熱重分析 38
4-3 1H NMR一維光譜、化學位移及縱向鬆弛時間分析 39
4-4 23Na NMR一維光譜及縱向鬆弛時間分析 41
4-5 23Na NMR零量子濾波光譜 43
4-6 23Na NMR雙量子濾波光譜 48
4-7 23Na NMR雙量子濾波魔角光譜 53
4-8 SIMPSON光譜模擬 60
4-9 多量子橫向鬆弛時間T2擬合 62
第五章 結論 67
參考文獻 69
附錄1 74
附錄2 98
參考文獻 References
(1)Kaspi, J.; Olah, G. A. Heterogeneous Catalysis by Solid Superacids. Methylation of Phenols with Methyl Alcohol and the Rearrangement of Anisole and ethylanisoles over a Perfluorinated Resinsulfonic Acid (Nafion-H) Catalyst. J. Org. Chem. 1978, 43, 3142-3147.
(2)Kreuer, K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 2001, 185, 29-39.
(3)Xu, F.; Leclerca, S.; Lottina, O.; Canet, D. Impact of chemical treatments on the behavior of water in Nafion NRE-212 by 1H NMR: Self-diffusion measurements and proton quantization. J. Membr. Sci. 2011, 137, 148-154.
(4)Schmidt-Rohr, K.; Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 2008, 7, 75-83
(5)Sagarik, K.; Phonyiem, M.; Lao-ngama, C.; Chaiwongwattana, S. Mechanisms of proton transfer in Nafions: elementary reactions at the sulfonic acid groups. Phys. Chem. Chem. Phys. 2008, 10, 2098–2112
(6)Okada, T.; Xie, G.; Gorseth, O.; Kjelstrup, S.; Nakamura, N.; Arimura T. Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim. Acta. 1998, 43, 3741-3747.
(7)Zhong, G.; Liu, Z.; Li, Tao.; Cheng, H.; Yu, S.; Fu, R.; Yang, Y. J. The states of methanol within Nafion and sulfonated poly(phenylene ether ether sulfone) membranes. J. Membrane Sci. 2013, 428, 212-217.
(8)Hongsirikarn, K.; Goodwin Jr, J. G.; Greenway, S.; Creager, S. Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane. J. Power Sources. 2010, 195, 7213-7220
(9)Okada, T.; Satou, H.; Okuno, M.; Yuasa, M. Ion and Water Transport Characteristics of Perfluorosulfonated Ionomer Membranes with H+ and Alkali Metal Cations. J. Phys. Chem. B 2002, 106, 1267-1273
(10)Okada, T.; Møller-Holst, S.; Gorseth, O.; Kjelstrup, S. Transport and equilibrium properties of Nafionw membranes with H+ and Na+ ions. J. Electroanal. Chem. 1998, 442, 137-145.
(11)Xu, F.; Leclerc, S.; Canet, D. NMR relaxometry study of the interaction of water with a Nafion membrane under acid, sodium, and potassium forms. Evidence of two types of bound water. J. Phys. Chem. B 2013, 117, 6534-6540.
(12)De Almeida, N. E.; Paul, D. K.; Karan, K.; Goward, G. R. 1H Solid-State NMR Study of Nanothin Nafion Films. J. Phys. Chem. C 2015, 119, 1280-1285.
(13)Olesen, A. C.; Berning, T.; Kær, S. K. On the Diffusion Coefficient of Water in Polymer Electrolyte Membranes. J. Electrochem. Soc. 2012, 50, 979-991
(14)Klein, M.; Perrin, J. C.; Leclerc, S.; Guendouz, L.; Dillet, J.; Lottin, O. Anisotropy of Water Self-Diffusion in a Nafion Membrane under Traction. Macromol. 2013, 46, 9259−9269
(15)Ghassemzadeh, L.; Kreuer, K. D.; Maier, J.; Müller, K. Chemical Degradation of Nafion Membranes under Mimic Fuel Cell Conditions as Investigated by Solid-State NMR Spectroscopy. J. Phys. Chem. C 2010, 114, 14635–14645.
(16)Rubatat, L.; Rollet, A. L.; Gebel, G.; Diat, O. Evidence of elongated polymeric aggregates in Nafion. Macromol. 2002, 35, 4050-4055.
(17)Man, P. P. In Quadrupole Couplings in Nuclear Magnetic Resonance, General; Meyers, R. A., Eds.; Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd, Chichester, 2000; p 12224-12265.
(18)Navon, G.; Shinar, H.; Eliav, U.; Seo, Y.; Multiquantum filters and order in tissues. NMR Biomed. 2001, 14, 112–132.
(19)Madelin, G.; Lee, J. S.; Regatte, R. R.; Jerschow, A. Sodium MRI: Methods and applications. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 79, 14-47.
(20)Borthakur, A.; Mellon, E.; Niyogi, S.; Witschey, W.; Kneeland, J. B.; Reddy, R. Sodium and T1ρ MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006, 7, 781–821.
(21)Gobet, M.; Mouaddab, M.; Cayot, N.; Bonny, J. M.; Guichard, E.; Le Quéré, J. L.; Moreaua, C.; Foucat, L. The effect of salt content on the structure of iota-carrageenan systems: 23Na DQF NMR and rheological studies. Magn. Reson. Chem. 2009, 47, 307–312.
(22)Ooms, K. J.; Cannella, M.; Vega, A. J.; Marcolongo, M.; Polenova, T. 23Na TQF NMR imaging for the study of spinal disc tissue. J. Magn. Reson. 2008, 195, 112-115.
(23)VanderSchee, C. R.; Ooms, K. J. Investigating Water Interactions with Collagen Using 2H Multiple Quantum Filtered NMR Spectroscopy To Provide Insights into the Source of Double Quantum Filtered Signal in Tissue. J. Phys. Chem. B 2014, 118, 3491−3497.
(24)Srinivasan, C.; Minadeo, N.; Toon, J.; Graham, D.; de Freitas, D. M.; Geraldes, C. F. G. C. Competition between Na+ and Li+ for Unsealed and Cytoskeleton-Depleted Human Red Blood Cell Membrane: A 23Na Multiple Quantum Filtered and 7Li NMR Relaxation Study. J. Magn. Reson. 1999, 140, 206–217.
(25)Ooms, K. J.; Vega, A. J.; Polenova, T.; Cannella, M.; Marcolongo, M. Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue. J. Magn. Reson. 2015, 258, 6-11.
(26)Vanderveen, J. R.; Blackburn, M. A.; Ooms, K. J. 2H double- and zero-quantum filtered NMR spectroscopy for probing the environments of water in Nafion. Can. J. Chem. 2011, 89, 1095–1104.
(27)Woudstra, J. M.; Ooms, K. J. Investigating the Water in Hydrated sPEEK Membranes Using Multiple Quantum Filtered 2H NMR Spectroscopy. J. Phys. Chem. B 2012, 116, 14724−14730.
(28)Torres, F. J.; Ochoa-Herrera, V.; Blowers, P.; Sierra-Alvarez, R. Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers. Chemosphere 2009, 76, 1143–1149.
(29)Ooms, K. J.; Cannella, M.; Vega1, A. J.; Marcolongo, M.; Polenova, T. The application of 23Na DQF NMR spectroscopy for the study of spinal disc degeneration. Magn. Reson. Med. 2008, 2, 246–252.
(30)Chia, C.; Wu, Z.; Wu, C.; Cheng, R.; Ding, S. Resolve the pore structure and dynamics of Nafion 117: application of high resolution 7Li solid state nuclear magnetic resonance spectroscopy. J. Mater. Chem. 2012, 22, 22440-22445.
(31)Mauritz, K. A.; Moore, R. B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4536-4586.
(32)de Almeida, S. H.; Kawano, Y. THERMAL BEHAVIOR OF NAFION MEMBRANES. J. Therm. Anal. Cal. 1999, 58, 569-577.
(33)Zawodzinski, Jr., T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; Gottesfeld, S. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc. 1993, 140, 1041-1047.
(34)Kirubakaran, A.; Jain, S.; Nema, R. K. A review on fuel cell technologies and power electronic interface. Renew. Sust. Energ. Rev. 2009, 13, 2430–2440.
(35)Wanga, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. APPL. ENERGY. 2011, 88, 981-1007.
(36)Grove, W. R. On Voltaic Series and the Combination of Gases by Platinum. Philos. Mag. A Ser. 3 1839, 14, 127-130.
(37)Feng, S.; Voth, G. A. Proton Solvation and Transport in Hydrated Nafion. J. Phys. Chem. B 2011, 115, 5903–5912.
(38)Knox, C. K.; Voth, G. A. Probing Selected Morphological Models of Hydrated Nafion Using Large-Scale Molecular Dynamics Simulations. J. Phys. Chem. B 2010, 114, 3205–3218.
(39)Neves, L. A.; Sebastião, P. J.; Coelhoso, I. M.; Crespo, J. G. Proton MR Relaxometry Study of Nafion Membranes Modified with Ionic Liquid Cations. J. Phys. Chem. B 2011, 115, 8713–8723.
(40)Meresi,G.; Wang, Y.; Bandis, A.; Inglefield, P. T.; Jones, A. A.; Wen, W. –Y. Morphology of dry and swollen perfluorosulfonate ionomer by fluorine-19 MAS, NMR and xenon-129 NMR. Polymer, 2001, 42, 6153-6160.
(41)Ando, S.; Harris, R. K.; Hirschinger, J.; Reinsberg, S. A.; Scheler, U. Solid-State 19F MAS, 19F CRAMPS, and 19F → 13C CP/MAS NMR Study of an Amorphous Perfluoropolymer. Macromolecules 2001, 34, 66–75.
(42)Liu, S. F.; Schmidt-Rohr, K. High-Resolution Solid-State 13C NMR of Fluoropolymers. Macromolecules 2001, 34, 8416-8418.
(43)Chen, Q.; Schmidt-Rohr, K. Backbone Dynamics of the Nafion Ionomer Studied by 19F-13C Solid-State NMR. Macromol. Chem. Phys. 2007, 208, 2189-2203.
(44)Ye, G.; Janzen, N.; Goward, G. R. Solid-State NMR Study of Two Classic Proton Conducting Polymers:  Nafion and Sulfonated Poly(ether ether ketone)s. Macromolecules 2006, 39, 3283-3290.
(45)Chen, Q.; Schmidt-Rohr, K. 19F and 13C NMR Signal Assignment and Analysis in a Perfluorinated Ionomer (Nafion) by Two-Dimensional Solid-State NMR. Macromolecules 2004, 37, 5995-6003.
(46)Takasaki, M.; Kimura, K.; Kawaguchi, K.; Abe A.; Katagiri, G. Structural Analysis of a Perfluorosulfonate Ionomer in Solution by 19F and 13C NMR. Macromolecules 2005, 38, 6031-6037.
(47)Stenina, I. A.; Sistat, P.; Rebrov, A. I.; Pourcelly, G.; Yaroslavtsev, A. B. Ion mobility in Nafion-117 membranes. Desalination 2004, 170, 49.
(48)Jayakody, J. R. P.; Stallworth, P. E.; Mananga, E. S.; Farrington-Zapata, J.; Greenbaum, S. G. High Pressure NMR Study of Water Self-Diffusion in NAFION-117 Membrane. J. Phys. Chem. B 2004, 108, 4260-4262.
(49)Every, H. A.; Hickner, M. A.; McGrath, J. E.; Zawodzinski Jr, T. A. An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes. J. Membr. Sci. 2005, 250, 183-188.
(50)Volkov, V. I.; Popkov, Y. M.; Timashev, S. F.; Bessarabov, D. G.; Sanderson, R. D.; Twardowski, Z. Self-diffusion of water and fluorine ions in anion-exchange polymeric materials (membranes and resin) as determined by pulsed-field gradient nuclear magnetic resonance spectroscopy. J. Membr. Sci. 2000, 180, 1-13
(51)Tsushima, S.; Teranishi, K.; Hirai, S. Magnetic Resonance Imaging of the Water Distribution within a Polymer Electrolyte Membrane in Fuel Cells. Electrochem. Solid-State Lett. 2004, 7, A269-A272.
(52)Wu, Z.; Wu, C. S.; Chu, P. P. J.; Ding, S. Nuclear magnetic resonance microimaging investigation of membrane electrode assembly of fuel cells: morphology and solvent dynamics. Magn. Reson. Imaging 2009, 27, 871-878.
(53)Kawamura, J.; Hattori, K.; Hongo, T.; Asayama, R.; Kuwata, N.; Hattori, T.; Mizusaki, J. Microscopic states of water and methanol in Nafion membrane observed by NMR micro imaging. Solid State Ionics 2005, 176, 2451-2456.
(54)Baker, R. T.; Naji, L.; Lochhead, K.; Chudek, J. A. In situ magnetic resonance imaging of electrically-induced water diffusion in a Nafion ionic polymer film. Chem. Commun. 2003, 962-963.
(55)Tsushima, S.; Nanjo, T.; Nishida, K.; Teranishi, K.; Hirai, S. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply. Magn. Reson. Imaging 2005 23, 255-258.
(56)Ghassemzadeh, L.; Marrony, M.; Barrera, R.; Kreuer, K. D.; Maier, J.; Müller, K. Chemical degradation of proton conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy. J. Power Sources 2009, 186, 334–338.
(57)Sabarinathan, V.; Wu, Z.; Cheng, R.; Ding, S. Multinuclear solid state nuclear magnetic resonance investigation of water penetration in proton exchange membrane Nafion-117 by mechanical spinning. J. Phys. Chem. B. 2013, 117, 6558-6565.
(58)Bak, M.; Rasmussen, J. T.; Nielsen, N. C. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy. J. Magn. Reson. 2000, 147, 296-330.
(59)Eliav, U.; Navon, G. Analysis of Double-Quantum-Filtered NMR-Spectra of Na-23 in Biological Tissues. J. Magn. Reson. B. 1994, 103, 19-29.
(60)Eliav, U.; Shinar, H.; Navon, G. The Formation of a 2nd-Rank Tensor in Na-23 Double-Quantum-Filtered NMR as an Indicator for Order in a Biological Tissue. J. Magn. Reson. 1992, 98, 223-229.
(61)Pekar, J.; Leigh, JS. Detection of Biexponential Relaxation in Na-23 Facilitated by Double-Quantum-Filtering. J. Magn. Reson. 1986, 69, 582-584.
(62)Jaccard, G.; Wimperis, S.; Bodenhausen, G. Multiple-Quantum NMR-Spectroscopy of S=3/2 Spin in Isotropic-Phase – a New Probe for Multiexponential Relaxation. J. Chem. Phys. 1986, 85, 6282-6293.
(63)Muller, N. Observation of Multiexponential Longitudinal and Transverse Relaxation in Two-Dimensional NMR. Chem. Phys. Lett. 1986, 131, 218-223.
(64)Braunschweiler, L.; Bodenhausen, G.; Ernst, RR. Analysis of Networks of Coupled Spin by Multiple Quantum NMR. Mol. Phys. 1983, 48, 535-560.
(65)Woessner, DE.; Bansal, N. Temporal Characteristics of NMR Signals from Spin 3/2 Nuclei of Incompletely Disordered Systems. J. Magn. Reson. 1998, 133, 21-35.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code