Responsive image
博碩士論文 etd-0808116-113206 詳細資訊
Title page for etd-0808116-113206
論文名稱
Title
核磁共振擴散及鬆弛揭示離子與高分子擁擠效應對造影劑性能之顯著影響
NMR diffusion and relaxation reveal significant ionic influence and macromolecular crowding effect on the performance of magnetic resonance imaging contrast agent
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-23
繳交日期
Date of Submission
2016-09-08
關鍵字
Keywords
梯度脈衝、聚乙二醇、擴散、磁共振造影劑、磁共振影像、磁共振鬆弛、離子水溶液、擁擠效應
NMR relaxation, Crowding effect, Polyethylene glycol (PEG), MRI contrast agent, Ions in aqueous solution, Magnetic resonance imaging (MRI), Pulse field gradient (PFG), Diffusion
統計
Statistics
本論文已被瀏覽 5664 次,被下載 382
The thesis/dissertation has been browsed 5664 times, has been downloaded 382 times.
中文摘要
磁共振影像(Magnetic Resonance Imaging, MRI)是一項非常有用且不使用游離輻射又能提供三維空間資訊的非侵入式檢測方法,在材料科學、生物醫學與醫療診斷、食品科學等領域中取得了豐富的成果。然而,在許多情況下,例如疾病的檢測會因為影像對比度不足難以判斷病變組織或器官的正確位置。透過MRI造影劑中高順磁性的金屬離子可以有效且有選擇性地加速水分子上1H的核鬆弛速率,從而改善影像對比度,提高診斷精準度。
現今的MRI造影劑理論假定造影劑處於一小分子組成的稀釋溶液中以便獲得一個較簡單、容易處理的近似環境。但生物細胞內是一個非常擁擠且複雜的環境。細胞內充斥著水、賀爾蒙、維生素等小分子以及離子外,還含有核酸、核醣體、蛋白質和碳水化合物等生物巨分子。因此MRI造影劑的行為與功能可能會被細胞環境內的離子與生物巨分子所影響。了解造影劑如何與細胞中其他分子或離子作用是非常重要也非常複雜的問題。
本工作聚焦於常見小離子對MRI造影劑在擁擠環境下的影響。我們選取的MRI造影劑是醫院常用的釓多酸水溶液(Dotarem);使用生物體中常見的鹽類(LiCl, NaCl, KCl, MgCl2, CaCl2, NaI)當作離子來源;使用人工合成不具有確定結構的惰性分子polyethylene glycol 6000 (PEG6k)作為擁擠劑,模擬細胞內擁擠環境。透過高場(500 MHz)核磁共振儀上的脈衝場梯度(Pulse Filed Gradient, PFG)NMR方法以及NMR鬆弛方法測量添加Dotarem溶液中水分子的平移與轉動擴散,探討溶液中水分子、鹽離子、高分子擁擠劑與造影劑間的交互作用。我們可以從NMR實驗中看到水分子上1H的轉動與平移擴散會被離子與擁擠效應顯著地影響。我們發現,隨著離子濃度變化,水的鬆弛速率及擴散速率呈現一些規則,與離子價數,離子大小以及擁擠劑的濃度和造影劑濃度有關。我們也利用變場式核磁共振儀測量NMR鬆弛分散(NMR Dispersion),了解水分子在各種磁場(0 – 40 MHz)下的動態資訊來佐證高場NMR鬆弛及PFG擴散結果。藉由與鬆弛與擴散機制研究鹽離子與擁擠環境下造影劑分子的動態,可以增加對MRI影像對比度生成的微觀機制之確認,避免核磁共振成像解讀上的誤判。
Abstract
Magnetic resonance imaging (MRI) has become the most important non-invasive method for providing three dimensional detailed images without using damaging radiation and is a powerful tool in materials science, biomedicine, medical diagnosis, food science and many other fields. In many situations such as in disease detection, however, the image contrast is not sufficient. Therefore, through the MRI contrast agent, its high paramagnetic ion can effectively and selectively accelerate water 1H nuclear relaxation rates. Therefore, water molecules in different microenvironments obtain a different relaxation acceleration so that a better contrast is achieved for the diseased regions.
However, current theory for MRI contrast agent was developed by assuming that the paramagnetic ions are located in a dilute aqueous solution. This is a good approximation in many situations such as water in a relatively free microenvironments, but cellular environment is highly crowded with various kinds of biomacromolecules (proteins, hydrocarbonates, genetic materials etc), small molecules (hormones, vitamins etc) and ions (H+, Na+, K+, Cl- etc). The performance of MRI contrast agent may be significantly altered by crowders and ions. Understanding how the contrast agent interacts with other molecules in cell is a very important and challenging problem.
In this work, we focus on the influence of common ions in organisms and macromolecular crowding effect on the performance of MRI contrast agent. The MRI contrast agent we chose is Dotarem which is the mostly used in medical diagnosis.. Then we follow the standard practice of selecting a macromolecular crowder (polyethylene glycol, M.W. 6000, PEG6k, an artificial inert macromolecule, with no specific structure in aqueous solutions) to mimic cellular environment. The ions used here are those mostly commonly found in humans (LiCl, NaCl, KCl, MgCl2, CaCl2, NaI). 1H NMR relaxation rates and translational diffusion rate of water and PEG6k are measured on a 500 MHz NMR spectrometer equipped with a Pulse Filed Gradient (PFG) unit. It is found that the longitudinal relaxation rates and translational diffusion coefficient are sensitive measures for quantifying the effects of ions and macromolecular crowders on the performance of MRI contrast agent. Within the concentration range typically present in an organism, these dynamic parameters are found to clearly depend on the concentration, type and valence number of the ions besides the concentration of MRI contrast agent and macromolecular crowding effect. These results are further supplemented by fast field cycling relaxometry (NMR relaxation dispersion) over a range between 0.01 – 40 MHz. The physical chemistry mechanism of these effects is elucidated by analyzing the experimental results. The significance of these effects to practical MRI is discussed. Based on the experimental and theoretical results as well as the analysis, we conclude that both the ionic and macromolecular effects must be taken into account for more precise MRI diagnosis or functional MRI studies.
目次 Table of Contents
摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 核磁共振原理與磁共振造影劑介紹 4
2.1 核磁共振簡介 4
2.2 核磁共振鬆弛 (Relaxation) 7
2.3 NMRD鬆弛速率隨磁場變化 9
2.4 脈衝場梯度擴散 11
2.5 MRI基礎原理 15
2.6 造影劑 18
2.6.1 順磁分子鬆弛理論 20
2.6.2 內層質子鬆弛機制 21
2.6.3 外層質子鬆弛機制 23
2.6.4 內外層水分子間的交換機制 24
第三章 擁擠和侷限效應 26
3.1擁擠和侷限效應 26
3.2熱力學觀點解釋擁擠和侷限 28
3.3 擁擠效應文獻回顧 32
第四章 溶液離子效應 35
4.1 鹽離子水溶液 35
4.2 水合離子半徑、水合交換速率 36
4.3 構築離子與解構離子 38
4.4 霍夫梅斯特序列 (Hofmeister Series) 41
4.5 高分子與離子間交互作用力 43
4.6 水溶液鹽離子效應與蛋白質 45
第五章 實驗部分 47
5.1 實驗藥品 47
5.1.1 Polyethylene glycol (PEG) 47
5.1.2 Dotarem (Gd-DOTA) 48
5.1.3 鹽離子 48
5.1.4 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) 48
5.2 樣品製備 49
5.2.1 擁擠劑水溶液製備 49
5.2.2 Dotarem水溶液製備 49
5.2.3 鹽離子水溶液製備 50
5.2.4 溶劑製備 51
5.3儀器實驗配製 51
5.3.1 平移與轉動擴散實驗 51
5.3.2 NMRD實驗 51
5.4儀器設備 52
5.5實驗參數 52
第六章 結果與討論 54
6.1 在無造影劑,不同鹽離子、擁擠劑濃度溶液中水的平移擴散速率 54
6.2 在有造影劑,不同鹽離子、擁擠劑濃度溶液中水與PEG6k的平移擴散速率 58
6.3 不同擁擠劑濃度氘代溶液中PEG6k的變溫1H,R1,R2,T1rho 65
6.4 不同鹽離子、擁擠劑與Dotaram造影劑濃度溶液中PEG6k的縱向鬆弛速率 68
6.5 1H NMRD實驗 71
6.6 與分子動力學模擬結果比較 75
第七章 結論 77
參考文獻 79
參考文獻 References
1. Cox, I.J., Development and applications of in vivo clinical magnetic resonance spectroscopy. Progress in biophysics and molecular biology, 1996. 65(1): p. 45-81.
2. Lange, N., et al., Plurality and resemblance in fMRI data analysis. NeuroImage, 1999. 10(3): p. 282-303.
3. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 1990. 87(24): p. 9868-9872.
4. Zhou, Z. and Z.R. Lu, Gadolinium‐based contrast agents for magnetic resonance cancer imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013. 5(1): p. 1-18.
5. Minton, A.P., The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem, 2001. 276(14): p. 10577-80.
6. Rivas, G., F. Ferrone, and J. Herzfeld, Life in a crowded world. EMBO Rep, 2004. 5(1): p. 23-7.
7. Ådén, J.r. and P. Wittung-Stafshede, Folding of an unfolded protein by macromolecular crowding in vitro. Biochemistry, 2014. 53(14): p. 2271-2277.
8. Munishkina, L.A., et al., The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. Journal of Molecular Recognition, 2004. 17(5): p. 456-464.
9. Zhou, H.-X., Polymer crowders and protein crowders act similarly on protein folding stability. FEBS letters, 2013. 587(5): p. 394-397.
10. Günther, H., NMR spectroscopy: basic principles, concepts and applications in chemistry. 2013: John Wiley & Sons.
11. Keeler, J., Understanding NMR spectroscopy. 2011: John Wiley & Sons.
12. Levitt, M.H., Spin dynamics: basics of nuclear magnetic resonance. 2001: John Wiley & Sons.
13. Meiboom, S. and D. Gill, Modified spin‐echo method for measuring nuclear relaxation times. Review of scientific instruments, 1958. 29(8): p. 688-691.
14. Stapf, S., R. Kimmich, and R.-O. Seitter, Proton and deuteron field-cycling NMR relaxometry of liquids in porous glasses: evidence for Lévy-walk statistics. Physical review letters, 1995. 75(15): p. 2855.
15. Kimmich, R. and E. Anoardo, Field-cycling NMR relaxometry. Progress in Nuclear Magnetic Resonance Spectroscopy, 2004. 44(3): p. 257-320.
16. Han, G., et al., Hydration of the oxygen-evolving complex of photosystem II probed in the dark-stable S 1 state using proton NMR dispersion profiles. Physical Chemistry Chemical Physics, 2014. 16(24): p. 11924-11935.
17. Galvosas, P., et al., Generation and application of ultra-high-intensity magnetic field gradient pulses for NMR spectroscopy. Journal of Magnetic Resonance, 2001. 151(2): p. 260-268.
18. Endom, L., et al., A Microdynamic Model of Electrolyte Solutions as Derived from Nuclear Magnetic Relaxation and Self‐Diffusion Data. Berichte der Bunsengesellschaft für physikalische Chemie, 1967. 71(9‐10): p. 1008-1031.
19. Kimmich, R., NMR: tomography, diffusometry, relaxometry. 2012: Springer Science & Business Media.
20. Hahn, E.L., Spin echoes. Physical review, 1950. 80(4): p. 580.
21. Stejskal, E.O. and J.E. Tanner, Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient. The journal of chemical physics, 1965. 42(1): p. 288-292.
22. Merbach, A.E. and É. Tóth, The chemistry of contrast agents in medical magnetic resonance imaging. Vol. 46. 2001: Wiley Online Library.
23. Flacke, S., et al., Novel MRI contrast agent for molecular imaging of fibrin implications for detecting vulnerable plaques. Circulation, 2001. 104(11): p. 1280-1285.
24. Doan, B.-T., S. Meme, and J.-C. Beloeil, General Principles of MRI. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Second Edition, 2013: p. 1-23.
25. Debroye, E. and T.N. Parac-Vogt, Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chemical Society Reviews, 2014. 43(23): p. 8178-8192.
26. Marie, H., et al., Superparamagnetic Liposomes for MRI Monitoring and External Magnetic Field‐Induced Selective Targeting of Malignant Brain Tumors. Advanced Functional Materials, 2015. 25(8): p. 1258-1269.
27. Caravan, P., et al., Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical reviews, 1999. 99(9): p. 2293-2352.
28. Freed, J.H., Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. The Journal of Chemical Physics, 1978. 68(9): p. 4034-4037.
29. Luz, Z. and S. Meiboom, Proton relaxation in dilute solutions of cobalt (II) and nickel (II) ions in methanol and the rate of methanol exchange of the solvation sphere. The Journal of Chemical Physics, 1964. 40(9): p. 2686-2692.
30. Swift, T.J. and R.E. Connick, NMR‐Relaxation Mechanisms of O17 in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere. The Journal of Chemical Physics, 1962. 37(2): p. 307-320.
31. Micskei, K., et al., Oxygen-17 NMR study of water exchange on gadolinium polyaminopolyacetates [Gd (DTPA)(H2O)] 2-and [Gd (DOTA)(H2O)]-related to NMR imaging. Inorganic Chemistry, 1993. 32(18): p. 3844-3850.
32. Minton, A.P., The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. Journal of biological chemistry, 2001. 276(14): p. 10577-10580.
33. Minton, A.P., How can biochemical reactions within cells differ from those in test tubes? Journal of cell science, 2006. 119(14): p. 2863-2869.
34. Zhou, H.-X., G. Rivas, and A.P. Minton, Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annual review of biophysics, 2008. 37: p. 375.
35. Minton, A.P., Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers, 1981. 20(10): p. 2093-2120.
36. McConkey, E.H., Molecular evolution, intracellular organization, and the quinary structure of proteins. Proceedings of the National Academy of Sciences, 1982. 79(10): p. 3236-3240.
37. Sasahara, K., P. McPhie, and A.P. Minton, Effect of dextran on protein stability and conformation attributed to macromolecular crowding. Journal of molecular biology, 2003. 326(4): p. 1227-1237.
38. Batra, J., et al., Effect of macromolecular crowding on protein binding stability: modest stabilization and significant biological consequences. Biophys J, 2009. 97(3): p. 906-11.
39. Dhar, A., et al., Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. Proceedings of the National Academy of Sciences, 2010. 107(41): p. 17586-17591.
40. Kilburn, D., et al., Molecular crowding stabilizes folded RNA structure by the excluded volume effect. Journal of the American Chemical Society, 2010. 132(25): p. 8690-8696.
41. Miklos, A.C., et al., Protein crowding tunes protein stability. Journal of the American Chemical Society, 2011. 133(18): p. 7116-7120.
42. Wang, Y., et al., Macromolecular crowding and protein stability. Journal of the American Chemical Society, 2012. 134(40): p. 16614-16618.
43. Minton, A.P., Quantitative assessment of the relative contributions of steric repulsion and chemical interactions to macromolecular crowding. Biopolymers, 2013. 99(4): p. 239-244.
44. Senske, M., et al., Protein stabilization by macromolecular crowding through enthalpy rather than entropy. J Am Chem Soc, 2014. 136(25): p. 9036-41.
45. Monteith, W.B. and G.J. Pielak, Residue level quantification of protein stability in living cells. Proceedings of the National Academy of Sciences, 2014. 111(31): p. 11335-11340.
46. Majumder, S., et al., Probing protein quinary interactions by in-cell nuclear magnetic resonance spectroscopy. Biochemistry, 2015. 54(17): p. 2727-2738.
47. Bakker, H., Structural dynamics of aqueous salt solutions. Chemical reviews, 2008. 108(4): p. 1456-1473.
48. Waldron, R.D., Infrared Spectra of HDO in water and ionic solutions. The Journal of Chemical Physics, 1957. 26(4): p. 809-814.
49. Walrafen, G.E., Raman spectral studies of the effects of electrolytes on water. The Journal of Chemical Physics, 1962. 36(4): p. 1035-1042.
50. Terpstra, P., D. Combes, and A. Zwick, Effect of salts on dynamics of water: A Raman spectroscopy study. The Journal of chemical physics, 1990. 92(1): p. 65-70.
51. Cox, W. and J. Wolfenden, The viscosity of strong electrolytes measured by a differential method. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1934. 145(855): p. 475-488.
52. Gurney, R.W. and R.W. Gurney, Ionic processes in solution. 1953.
53. Friedman, H., C. Krishnan, and F. Franks, Water A Comprehensive Treatise, vol. 3Plenum. New York, 1973: p. 1.
54. Conway, B. and E. Ayranci, Effective ionic radii and hydration volumes for evaluation of solution properties and ionic adsorption. Journal of solution chemistry, 1999. 28(3): p. 163-192.
55. Dove, P.M. and C.J. Nix, The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochimica et Cosmochimica Acta, 1997. 61(16): p. 3329-3340.
56. Kinrade, S.D., Oxygen-17 NMR study of aqueous potassium silicates. The Journal of Physical Chemistry, 1996. 100(12): p. 4760-4764.
57. Burgess, J., Ions in solution: basic principles of chemical interactions. 1999: Elsevier.
58. Corey, V.B., Adiabatic compressibilities of some aqueous ionic solutions and their variation with indicated liquid structure of the water. Physical Review, 1943. 64(11-12): p. 350.
59. Frank, H. and A. Robinson, The entropy of dilution of strong electrolytes in aqueous solutions. The Journal of Chemical Physics, 1940. 8(12): p. 933-938.
60. Marcus, Y., Effect of ions on the structure of water: structure making and breaking. Chemical reviews, 2009. 109(3): p. 1346-1370.
61. Ben-Naim, A., Structure-breaking and structure-promoting processes in aqueous solutions. The Journal of Physical Chemistry, 1975. 79(13): p. 1268-1274.
62. Ben-Naim, A., A simple model for demonstrating the relation between solubility, hydrophobic interaction, and structural changes in the solvent. The Journal of Physical Chemistry, 1978. 82(8): p. 874-885.
63. Marcus, Y. and A. Ben‐Naim, A study of the structure of water and its dependence on solutes, based on the isotope effects on solvation thermodynamics in water. The Journal of chemical physics, 1985. 83(9): p. 4744-4759.
64. Mähler, J. and I. Persson, A study of the hydration of the alkali metal ions in aqueous solution. Inorganic chemistry, 2011. 51(1): p. 425-438.
65. Hofmeister, F., On the understanding of the effects of salts. Arch. Exp. Pathol. Pharmakol.(Leipzig), 1888. 24: p. 247-260.
66. Zhou, H.X., Interactions of macromolecules with salt ions: an electrostatic theory for the Hofmeister effect. PROTEINS: Structure, Function, and Bioinformatics, 2005. 61(1): p. 69-78.
67. Hünefeld, F.L., Der Chemismus in der thierischen Organisation: Physiologisch-chemische Untersuchungen der materiellen Veränderungen, oder des Bildungslebens im thierischen Organismus; insbesondere des Blutbildungsprocesses, der Natur der Blut körperchen und ihrer Kernchen. Ein Beitrag zur Physiologie und Heilmittellehre. 1840: Brockhaus.
68. Debye, P. and E. Hückel, De la théorie des électrolytes. i. abaissement du point de congélation et phénomènes associés. Physikalische Zeitschrift, 1923. 24(9): p. 185-206.
69. Hertz, H., Microdynamic behaviour of liquids as studied by NMR relaxation times. Progress in Nuclear Magnetic Resonance Spectroscopy, 1967. 3: p. 159-230.
70. Tanaka, K., Measurements of self-diffusion coefficients of water in pure water and in aqueous electrolyte solutions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1975. 71: p. 1127-1131.
71. Collins, K.D. and M.W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces. Quarterly reviews of biophysics, 1985. 18(04): p. 323-422.
72. Michel, B.E. and M.R. Kaufmann, The osmotic potential of polyethylene glycol 6000. Plant physiology, 1973. 51(5): p. 914-916.
73. Yang, L., Y. Fan, and Y.Q. Gao, Differences of cations and anions: Their hydration, surface adsorption, and impact on water dynamics. The Journal of Physical Chemistry B, 2011. 115(43): p. 12456-12465.
74. Clop, E.M., M.A. Perillo, and A.K. Chattah, 1H and 2H NMR Spin–Lattice Relaxation Probing Water: PEG Molecular Dynamics in Solution. The Journal of Physical Chemistry B, 2012. 116(39): p. 11953-11958.
75. Lüsse, S. and K. Arnold, The interaction of poly (ethylene glycol) with water studied by 1H and 2H NMR relaxation time measurements. Macromolecules, 1996. 29(12): p. 4251-4257.
76. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-1802.
77. Zoete, V., et al., SwissParam: a fast force field generation tool for small organic molecules. Journal of computational chemistry, 2011. 32(11): p. 2359-2368.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code