Responsive image
博碩士論文 etd-0808116-134924 詳細資訊
Title page for etd-0808116-134924
論文名稱
Title
內嵌式工具應用於異種金屬摩擦攪拌銲接之擠壓過程中的熱傳導與材料流動之理論解析
Theoretical Studies on the Heat Transfer and Plastic Flow of Dissimilar Materials during Plunging Process in Friction Stir Welding Using an Embedded-Rod Tool
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-26
繳交日期
Date of Submission
2016-09-08
關鍵字
Keywords
擠壓深度、異種金屬、塑性流動、內嵌式銲接工具
material flow, dissimilar materials, plunge depth, Embedded-rod Tool
統計
Statistics
本論文已被瀏覽 5708 次,被下載 1
The thesis/dissertation has been browsed 5708 times, has been downloaded 1 times.
中文摘要
本研究使用內嵌式銲接工具,進行摩擦攪拌點銲搭接低碳鋼板與鋁合金板,並以理論解析此搭接過程,探討操作參數對低碳鋼板與鋁合金板之塑性流動和溫度分佈的影響。
鋁合金板置於上方時,擠壓深度為3 mm,點銲搭接100 s後其最大破壞負荷可達16 kN,破斷接合面為橢圓型,觀察破斷面中的接合區域與理論模擬之溫度分布,發現良好的接合面約與460°C之等溫線範圍一致,依此預測接合面溫度高於460°C,可形成IMC使得鋁與鋼得到良好的接合。理論解析亦發現良好接合面積與試片長度成反比關係,與負荷和轉速成正相關。
鋼板置於上方時,持壓35 s後,在接合面中央區域的鋁合金已熔化,理論模擬可求得熔解(652°C)等溫線所包圍面積。理論模擬顯示摩擦係數的降低,會降低接合面溫度,但是上板具有高的熱傳導係數(如鋁或銅),則會使接合面溫度下降更多,其效應顯然大於摩擦係數的降低。欲使搭接面溫度達到652℃,可增加停留時間、增加工具與工件間之摩擦係數、或者減少下板鋁合金的厚度、和減少上板之熱傳導係數。
Abstract
The embedded-rod welding tools are used to conduct the friction stir spot welding for the lap of the low carbon steel and aluminum alloy sheets. The theoretical model is used to analyze this lap process and to explore the effects of operating parameters on the plastic flow and temperature distribution for the low carbon steel and aluminum sheets.
When the Al alloy is placed on the top with the plunge depth of 3 mm, the maximum failure load can achieve 16 kN after 100 s lap welding, and the bonded region in this fractured surface is elliptic. Observing the bonded region in this fractured surface and the theoretical temperature distribution, it is found that the boundary of a bonded region is in consistent with the 460°C isotherm. Thus, the predicted temperature larger than 460°C can form the IMC of aluminum and steel. Theoretical analysis is also found that the bonded area is inversely proportional to the length of the lapped specimens, and proportional to the load and rotating speed.
When the steel is placed on the top and the dwell time of 35 s, the aluminum alloy in the central area near the faying surface has melted. Theoretical simulations can predicted the 652°C isotherm (the liquidus of Al alloy). Theoretical simulations show the smaller the friction coefficient between the tool and the workpiece, the smaller temperature of the faying surface, but the upper plate having a high thermal conductivity (e.g. aluminum or copper) will decrease this temperature, which is clearly greater than the effect of reducing the coefficient of friction. To achieve the temperature of 652°C, we can increase dwell time, increase the coefficient of friction, or reduce the thickness of the lower plate of aluminum, and reduce the thermal conductivity of the upper plate.
目次 Table of Contents
審定書------------------------------------------------------------------------------------------------------------------i
誌謝---------------------------------------------------------------------------------------------------------------------ii
摘要--------------------------------------------------------------------------------------------------------------------iii
Abstract--------------------------------------------------------------------------------------------------------------iv
目錄--------------------------------------------------------------------------------------------------------------------v
圖次--------------------------------------------------------------------------------------------------------------------vi
表次-------------------------------------------------------------------------------------------------------------------viii
第一章緒論------------------------------------------------------------------------------------------------------------1
1.1 摩擦攪拌銲接概論---------------------------------------------------------------------------------------------1
1.2文獻回顧-----------------------------------------------------------------------------------------------------------2
1.3研究目的-----------------------------------------------------------------------------------------------------------6
1.4論文架構-----------------------------------------------------------------------------------------------------------6
第二章 理論模型-----------------------------------------------------------------------------------------------------7
2.1 銲接工具種類----------------------------------------------------------------------------------------------------8
2.2 三維圓柱座標系-------------------------------------------------------------------------------------------------9
2.3 熱傳模型---------------------------------------------------------------------------------------------------------10
2.4 材料塑性變形產熱--------------------------------------------------------------------------------------------14
2.5 材料塑性流動模型 -------------------------------------------------------------------------------------------19
2.6 數值方法---------------------------------------------------------------------------------------------------------21
第三章結果與討論-------------------------------------------------------------------------------------------------29
3.1 工具種類對材料溫度與塑性流動之影響--------------------------------------------------------------35
3.2探討鋁/鋼定深度FSLW之銲接機制---------------------------------------------------------------------40
3.3擠壓力量對材料溫度與塑性流動之影響---------------------------------------------------------------45
3.4工具轉速對材料溫度與塑性流動之影響---------------------------------------------------------------61
3.5工具進給速度對材料溫度與塑性流動之影響--------------------------------------------------------74
3.6探討鋼/鋁定負荷FSSW之銲接機制--------------------------------------------------------------------80
第四章結論----------------------------------------------------------------------------------------------------------88
4.1結論---------------------------------------------------------------------------------------------------------------88
4.2未來展望--------------------------------------------------------------------------------------------------------89
參考文獻-------------------------------------------------------------------------------------------------------------90
參考文獻 References
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith, and C. Dawes, Intl. Patent Application no PCT/GB92/02203 and GB Patent Application 1991. no. 9125978. 9
[2] W.M. Thomas, E.D. Nicholas, Friction stir welding for the transportation industries. Materials and Design, 18 (1997) 269-27
[3] M.A. Sutton, B. Yang,A.P. Reynolds and R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum. Materials Science and Engineering A, 323 (2002) 160-166
[4] M. P. Miles, T. W. Nelson, R. Steel, E. Olsen and M. Gallagher, Effect of friction stir welding conditions on properties and microstructures of high strength automotive steel. Science and Technology of Welding and Joining, 14 (2009) 228-232
[5] K. Nakata, Friction stir welding of copper and copper alloys. Welding International, 19 (2005) 929-933
[6] T. Ogura, H. Umeshita, Y. Saito, A. Hirose, Q. J. Jpn, Weld, Soc.27 (2009) 174-178
[7] T. Ogura, K. Ueda, Y. Saito, A. Hirose, Mater. Trans. , 52 (2011) 979-984
[8] H.T. Lee, M.H. Chen, Mater. Sci. Eng. , 333 (2002) 24-34
[9] K.J. Lee, S. Kumai, Mater. Trans. , 47 (2006) 1178-1185
[10] E. Schbert, M. Klassen, I. Zener, C. Walz, G. Sepold, J. Mater. Prod. Tech. , 115 (2001) 2-8
[11] M. Roulin, J.W. Luster, G. Karadeniz, A. Mortensen, Wel. J. , 78 (1999)
151-155
[12] R. Padmanabhan, M.C. Oliveira, L.F. Menezes, Mater. Des. , 29 (2008) 154-
160
[13] K. Bouche , F. Barbier , A. Coulet, Intermetallic compound layer growth between solid iron and molten aluminium. Materials Science and Engineering A, 249 (1998) 167-175
[14] K. Kimapong, T. Watanabe, Effect of welding process
parameters on mechanical property of FSW Lap joint between aluminum alloy
and steel. Materials Transactions, 46 (2005) 2211-2217
[15] K. Kimapong, T. Watanabe, Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding. 4 (2005) 835-841
[16] K. Aota, K. Ikeuchi, Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plates. Welding International, 23(2009) 572-580
[17] M. Watanabe, K. Feng, Y. Nakamura and S. Kumai, Growth
Manner of Intermetallic Compound Layer Produced at Welding Interface of
Friction Stir Spot Welded Aluminum/Steel Lap Joint. Materials transactions,
52 (2011) 953-959
[18] J.E. Gould and Z. Feng, Heat flow model for friction sitr welding of aluminum
alloys. Journal of Materials Processing & Manufacturing Science, 7 (1998) 185-
194
[19] Y. Chao and X. Qi, Thermal and thermo-mechanical modeling of friction stir
welding of aluminum alloy 6061-T6. J. Mater. Proc. Mfg. Sci. , 7 (1998) 215-
223
[20] Ø. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir
Welding of Age Hardening Aluminum Alloys. Metallurgical and Materials
Transactions A, 32A (2001) 1189-1200
[21] M. Song and R. Kovacevic, Numerical and experimental study of the heat
transfer process in friction stir welding. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217 (2003)
73-85
[22] M. Song and R. Kovacevic, Thermal modeling of friction stir welding in a
moving coordinate system and its validation. International Journal of Machine
Tools & Manufacture, 43(2003) 605-615
[23] M. Song and R. Kovacevic, Heat transfer modeling for both workpiece and tool
in the friction stir welding process: a coupled model. Proceedings of the
Institution of Mechanical Engineers, Part B: J. Engineering Manufacture, 218
(2004) 17-33
[24] A. Askari, S. Silling, B. London and M. Mahoney, Modeling and analysis of
friction stir welding processes. in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, D.P. Field (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, (2001) 43-54
[25] P. Ulysse, Three-dimensional modeling of the friction stir-welding process. International Journal of Machine Tools and Manufacture, 42 (2002) 1549-1557
[26] H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding. Modeling Simul. Mater. Sci. Eng. , 12(2004) 143-157
[27] R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding. Metallurgical and Materials Transactions A, 37A(2006) 1247-1259
[28] R. Nandan, B. Prabu, A. De, and T. DebRoy, Improving Reliability of Heat Transfer and Materials Flow Calculations during Friction Stir Welding of Dissimilar Aluminum Alloys. Welding Journal, 86(2007) 313-322
[29] R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Three-dimensional heat and material flow during friction stir of mild steel. Acta Materialia , 55(2007) 883-895
[30] P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, D. Allehaux, Mechanical and thermal modelling of friction stir welding, Journal of Materials Processing Technology , 171(2006) 348–357
[31] B.C. Liechty, B.W. Webb, Modeling the frictional boundary condition in friction stir welding, International Journal of Machine Tools & Manufacture, 48(2008) 1474–1485
[32] O.C. Zienkiewicz and I.C. Cormeau, Vis-co-plasticity solution by finite- element process. Arch Mech, 24(1972) 872-889
[33] H.S. Kong and M.F. Ashby, Friction-heating maps and their applications. MRS
Bull, 16(1991) 41-48
[34] J.A. Khan, L. Xu and Y.J. Chao, Prediction of nugget development during
resistance spot welding using coupled thermal-electrical-mechanical model. Sci
Technol Weld Join, 4(1999) 201-207.
[35] Z. Deng, M.R. Lovell and K.A. Tagavi, Influence of material properties and
forming velocity on the interfacial slip characteristics of cross wedge rolling.
Manuf Sci Eng, 123(2001) 647-653.
[36] S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite element simulation of
material flow in friction stir welding. Sci Technol Weld Join, 6(2001) 191-
193.
[37] A. Kumar and T. DebRoy, Guaranteed fillet weld geometry from heat transfer
model and multivariable optimization. Int J Heat Mass Transfer, 47(2004)
5793-5806
[38] A. Kumar A, W. Zhang, and T. DebRoy, Improving reliability of modelling heat
and fluid flow in complex gas metal arc fillet welds. Part I: An engineering 
   physics model. J Phys D: Appl Phys, 38(2005) 119-126
[39] A. De and T. DebRoy, Reliable calculations of heat and fluid flow during  
   conduction mode laser welding through optimization of un-certain parameters.  
Weld J. , 84(2005) 101-112
[40] A. De and T. DebRoy, Probing unknown welding parameters from convective
heat transfer calculation and multivariable optimization. J Phys D Appl Phys,
   37(2006) 140-150
[41] R. Nandan, T. Debroy and H.K.D.H Bhadeshia, Recent advances in friction-stir  
   welding - Process, weldment structure and properties. Progress in Materials
   Science, 53(2008) 980-1023
[42] 歐恒睿,理論解析異種金屬摩擦攪拌銲接之熱傳導與塑性流動,國立中山
大學,機械與機電研究所,碩士論文,2015。
[43] 黃柏尹,內嵌式銲接工具應用於異種金屬摩擦攪拌銲接過程之理論與實驗
研究,國立中山大學,機械與機電研究所,碩士論文,2015。
[44] Y.C Chiou, C.T. Liu, R.T. Lee, A Pinless Embedded Tool Used in FSSW and FSW of Aluminum Alloy, Journal of Materials Processing Technology, 213 (2013) 1818-1824
[45] B. Bhushan, Introduction to tribology. John Wiley & Sons, Inc, New York, (2002) 252-254
[46] A. Bastier, M.H. Maitournam, K. Dang Van, and F. Roger, Steady State Thermomechanical Modelling of Friction Stir Welding. Science and Technology of Welding and Joining, 11(2001) 278-288
[47] T. Sheppard and D.S. Wright, Met. Tech. , 6(1979) 215-223
[48] S. W. Yuan, Foundations of fluid mechanics, Taipei Taiwan, Mei Ya publications, Inc, (1971) 115-123
[49] W. D. Wilson, Lubrication by a melting solid, Transactions of the ASME, 1(1976) 22-26
[50] Awang, M., Mucino, V. H., Feng, Z., & David, S. A. (2005). Thermo-mechanical modeling of friction stir spot welding (FSSW) process: use of an explicit adaptive meshing scheme (No. 2005-01-1251). SAE Technical Paper
[51] Avallone, E., and Baumeister, T., 1987, Marks Standard Handbook for Mechanical Engineers, 9th Ed
[52] A. Kyusojin, K. Nishimoto, Y. Oyobe, Study on mechanism of friction welding in carbon steels. JSME, 23(1980) 1388-1395
[53] M. J. Hsieh, Y. C. Chiou, R. T. Lee, Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool. Journal of Materials Processing Technology, 224 (2015) 149-155
[54] Hsieh, M.J., Lee, R.T., and Chiou, Y.C., 2016. Friction Stir Spot Fusion Welding of Low-Carbon Steel to Aluminum Alloy, ac-cepted by J. Mater. Proc. Technol.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.119.199
論文開放下載的時間是 校外不公開

Your IP address is 3.145.119.199
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code