Responsive image
博碩士論文 etd-0808116-165409 詳細資訊
Title page for etd-0808116-165409
論文名稱
Title
以非結構性網格三維數值模式探討颱風之水動力機制
A study of the hydrodynamics from typhoon by using a non-structured FEM (SCHISM)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-09-07
繳交日期
Date of Submission
2016-09-08
關鍵字
Keywords
水動力模式、非結構性網格、湧升流、冷尾跡、颱風強度
Typhoon Strength, Cold Wake, Upwelling, Non-structural Grid, Hydrodynamic Model
統計
Statistics
本論文已被瀏覽 5721 次,被下載 233
The thesis/dissertation has been browsed 5721 times, has been downloaded 233 times.
中文摘要
颱風在海洋表面和上層海洋產生冷尾跡和湧升流,且容易受到颱風狀態、海洋上層結構以及海底地形的影響。本研究利用三維水動力模式SCHISM(Semi-implicit Cross-scale Hydroscience Integrated System Model) ,設計一理想颱風於緯度20 度由西向東通過理想海洋,研究其產生冷尾跡和湧升流之機制,並有系統性地比較海洋在不同海底地形、颱風強度、移動速度、海表溫度、混和層深度和26度等溫線深度設定對颱風於海洋產生冷尾跡和湧升流之影響差異。其後,以凡那比颱風做為模擬的例子,並利用模式檢驗模擬結果是否與觀測現象符合。
研究結果顯示颱風對海洋產生冷尾跡之機制為:颱風在路徑右側因摩擦拖曳海水產生強流,使颱風後方水位降低,為恢復颱風造成之低水位,水流應從四周湧入,但颱風吹風方向為輻射向外,阻擋四周水流入,因此僅能從颱風下方補充,形成強烈的湧升流,而湧升流在上升的過程當中,會被颱風逆時針的風向帶至颱風路徑之右側,所以冷尾跡才會經常出現在路徑右側。另外,經分析經此等現象產生之颱風中心最大溫降和各海洋、颱風與地形等因子變化後,研究發現地形只在500公尺內的海域有影響,颱風強度和海表最大下降溫度呈現乘冪正相關,移動速度和26度等溫線深度設定呈現乘冪負相關,而混和層深度則和海表最大下降溫度影響相關程度不大。本研究利用高相關度的移動速度和最大風速假設其關係式,並利用試誤法推估出颱風產生冷尾跡後,在颱風中心能夠產生多少溫降之颱風中心模擬溫降回歸公式:
颱風中心模擬溫降〖∆T〗_core=〖10〗^(-10)×〖颱風移動速度〗^6.3×〖颱風近中心最大風速〗^(-1.4)
當颱風中心模擬溫降超過2.5℃,颱風強度便可能停止增強甚至是減弱。本研究模擬凡那比颱風結果在現象上相當不錯,發現到當颱風移動速度過慢或是颱風速度太強時,有可能產生更強烈的湧升流,導致海水上升速度更快,也因為颱風風速增強使得右側流速更快,就有可能將右後方的冷水團推至颱風前方,導致颱風遇上自己產生的海表冷卻,導致自身的強度受到影響,導致停止增強或是減弱。
研究將公式代入凡那比、天兔颱風等之資料,發現的確在超過大約2.5℃之後,颱風的強度即不再增強。但也發現此公式並非絕對,可能會有產生高估或低估的狀況,因本公式假設颱風是在平常的西北太平洋狀態,當前方出現冷暖渦,或是水深變淺時等其它可能會影響整個現象時,便有可能會產生誤差,因此,此公式仍有待改善,但已能做簡易之參考。
Abstract
Typhoon usually produces cold and upwelling on the sea surface and upper ocean. They are easily effected by typhoon status, upper ocean structure and seabed. In this study, we design an idealize typhoon passing thought an idealize ocean at 20˚N by using three-dimensional hydrodynamic model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model). We study for their mechanisms and using different depth of seabed, typhoon’s strength, typhoon’s speed, sea surface temperature, mixed layer depth and 26 degree isotherm depth setting to see what will the sea surface temperature at typhoon center difference between each case. Then, we try to simulation the typhoon fanapi to see the model effective.
The result shows that the mechanism of cold wake and upwelling by typhoon.
Because of the drag force, the strong wind generate a strong flow on the typhoon’s right path. It cause an low elevation on the back of typhoon. To balance the elevation, surrounding seawater must flow into this area. But the typhoon blows out. That makes only the subsurface cold water can comes up. So, the upwelling appeared. By counterclockwise horizontal flow, that makes the upwelling reach right hand side of typhoon’s path. In addition, the maximum decrease of sea surface temperature at typhoon center was analyzed with the factors we just talk about. Analysis shows the terrain affects only found within 500 meters of the sea. The typhoon intensity and sea surface temperature showing the maximum decline exponentiation positive correlation. Movement speed and 26 degree isotherm depth setting presented a power of negative correlation, while the depth of the mixed layer and the sea surface temperature has only a little effect on the maximum decrease of the temperature at typhoon center. In this study, the maximum wind speed and typhoon movement speed has a highly correlation with it so that we can assumed an equation to connect them. We use try error method to let the equation close to our idealize result. The equation following by:
the maximum decrease of the temperature at typhoon center(〖∆T〗_core)intensify=〖10〗^(-10)×〖typhoon movement speed〗^6.3×〖typhoon maximum wind speed〗^(-1.4)
The equation are very precise when we simulation the typhoon fanapi. We find out when the 〖∆T〗_core<2.5℃ , typhoon fanapi stop intensification because of it let it’s cold wake influence itself. When typhoon go too slow or intensify too strong, it will make the right side’s horizontal flow brings the cold wake to the front of typhoon and let it stop drawing energy from the ocean.
Keywords: typhoon strength, cold wake, upwelling, non-structural grid, hydrodynamic model
目次 Table of Contents
論文審定書………………………………………………………………………………i
謝誌 ii
摘要 iii
Abstract v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 研究問題與目的 3
1.3 研究流程 3
1.4 研究架構 5
第二章 文獻回顧 6
2.1 颱風生成發展與海洋條件 6
2.2 海洋對颱風之影響 11
2.3 颱風對海洋之作用 20
第三章 研究方法 30
3.1 前言 30
3.2 水動力模式:數值模式-SCHISM 30
3-2-1 控制方程式 32
3-2-2 模式特性 34
3-2-3 理想海洋場溫度設定 36
3.3 理想颱風模式 37
第四章 案例測試 39
4-1 前言 39
4-2 案例設計 39
4-3 案例分析 40
4-4 水深、地形變化 59
4-5 颱風風速及移動速度變化 62
4-6 海洋狀態變化 75
4-7 小結與回歸公式 77
第五章 實際颱風模擬 78
第六章 結論與建議 82
參考文獻 84
參考文獻 References
Anthes, R. A. (1982). Tropical cyclones: their evolution, structure and effects (Vol. 41, p. 1). Boston: American Meteorological Society.
Black, P. G., & Shay, L. K. (1998). Observations of tropical cyclone intensity change due to air-sea interaction processes. In Preprints, Symp. on Tropical Cyclone Intensity Change, Amer Meteor Soc (pp. 11-16).
Black, P. G., D'Asaro, E. A., Drennan, W. M., & French, J. R. (2007). Air-sea exchange in hurricanesl : synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bulletin of the American Meteorological Society, 88(3), 357.
Burla, M., Baptista, A. M., Zhang, Y., & Frolov, S. (2010). Seasonal and interannual variability of the Columbia River plume: A perspective enabled by multiyear simulation databases. Journal of Geophysical Research: Oceans,115(C2).
Chang, Y., Liao, H. T., Lee, M. A., Chan, J. W., Shieh, W. J., Lee, K. T., ... & Lan, Y. C. (2008). Multisatellite observation on upwelling after the passage of Typhoon Hai‐Tang in the southern East China Sea. Geophysical Research Letters, 35(3).
Chiang, T. L., Wu, C. R., & Oey, L. Y. (2011). Typhoon Kai-Tak: an ocean's perfect storm. Journal of Physical Oceanography, 41(1), 221-233.
Cione, J. J., & Uhlhorn, E. W. (2003). Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Monthly Weather Review, 131(8), 1783-1796.
D'Asaro, E. A., Black, P. G., Centurioni, L. R., Harr, P., Jayne, S. R., Lin, I. I., ... & Rainville, L. (2011). Typhoon-ocean interaction in the western North Pacific: Part 1. Oceanography.
D'Asaro, E. A., Sanford, T. B., Niiler, P. P., & Terrill, E. J. (2007). Cold wake of hurricane frances. Geophysical Research Letters, 34(15).
Dvorak, V. F. (1984). Tropical cyclone intensity analysis using satellite data (Vol. 11). US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service.
Elliott, B. A. (1982). Anticyclonic rings in the Gulf of Mexico. Journal of Physical Oceanography, 12(11), 1292-1309.
Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences, 43(6), 585-605.
Emanuel, K. A. (1995). Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. Journal of the Atmospheric Sciences, 52(22), 3969-3976.
Emanuel, K. A. (1997). Some aspects of hurricane inner-core dynamics and energetics. Journal of the atmospheric sciences, 54(8), 1014-1026.
Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665-669.
Emanuel, K., DesAutels, C., Holloway, C., & Korty, R. (2004). Environmental control of tropical cyclone intensity. Journal of the atmospheric sciences, 61(7), 843-858.
Emanuel, K. (2001). Contribution of tropical cyclones to meridional heat transport by the oceans. Journal of Geophysical Research: Atmospheres, 106(D14), 14771-14781.
Emanuel, K. (2005). Divine wind: the history and science of hurricanes. Oxford University Press.
Fisher, E. L. (1958). Hurricanes and the sea-surface temperature field. Journal of meteorology, 15(3), 328-333.
Gallacher, P. C., Rotunno, R., & Emanuel, K. A. (1989). Tropical cyclogenesis in a coupled ocean–atmosphere model. In Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc (pp. 121-122).
Goni, G., DeMaria, M., Knaff, J., Sampson, C., Ginis, I., Bringas, F., ... & Sandery, P. (2009). Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. National Oceanic and Atmospheric Administration Rockville MD.
Goni, G. J., & Trinanes, J. A. (2003). Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Transactions American Geophysical Union, 84(51), 573-578.
Garzoli, S. (1996). Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. Journal of Geophysical Research, 101(C7), 16273-16289.
Goni, G. J., & Trinanes, J. A. (2003). Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Transactions American Geophysical Union, 84(51), 573-578.
Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), 669-700.
Ho, C. H., Baik, J. J., Kim, J. H., Gong, D. Y., & Sui, C. H. (2004). Interdecadal changes in summertime typhoon tracks. Journal of Climate, 17(9), 1767-1776.
Holliday, C. R., & Thompson, A. H. (1979). Climatological characteristics of rapidly intensifying typhoons. Monthly Weather Review, 107(8), 1022-1034.
Hong, X., S. W. Chang, S. Raman, L. K. Shay, & R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico.Mon. Wea. Rev., 128, 1347–1365.
Hung, C. C., & Gong, G. C. (2011). Biogeochemical responses in the southern East China Sea after typhoons. Oceanography.
Hwang, C., Wu, C. R., & Kao, R. (2004). TOPEX/Poseidon observations of mesoscale eddies over the Subtropical Countercurrent: Kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. Journal of Geophysical Research: Oceans, 109(C8).
Jacob, S. D., Shay, L. K., Mariano, A. J., & Black, P. G. (2000). The 3D oceanic mixed layer response to Hurricane Gilbert. Journal of physical oceanography, 30(6), 1407-1429.
Jordan, C. L. (1964). On the influence of tropical cyclones on the sea surface temperature, paper presented at Symposium on Tropical Meteorology, World Meteorol. Organ., Wellington.
Lee, C. S., Lin, Y. L., & Cheung, K. K. (2006). Tropical cyclone formations in the South China Sea associated with the mei-yu front. Monthly weather review, 134(10), 2670-2687.
Leipper, D. F., & Volgenau, D. (1972). Hurricane heat potential of the Gulf of Mexico. Journal of Physical Oceanography, 2(3), 218-224.
Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., & Pun, I. F. (2005). The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133(9), 2635-2649.
Lin, I. I., Wu, C. C., Pun, I. F., & Ko, D. S. (2008). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons' intensification. Monthly Weather Review, 136(9), 3288-3306.
Lin, I. I., Liu, W. T., Wu, C. C., Chiang, J. C., & Sui, C. H. (2003). Satellite observations of modulation of surface winds by typhoon‐induced upper ocean cooling. Geophysical research letters, 30(3).
Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., & Pun, I. F. (2005). The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133(9), 2635-2649.
Lin, I. I., Chen, C. H., Pun, I. F., Liu, W. T., & Wu, C. C. (2009). Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophysical Research Letters, 36(3).
Lin, I. I., Pun, I. F., & Wu, C. C. (2009a). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Monthly Weather Review, 137(11), 3744-3757.
Lin, I. I., Chou, M. D., & Wu, C. C. (2011). The Impact of a Warm Ocean Eddy on Typhoon Morakot (2009): A Preliminary Study from Satellite Observations and Numerical Modelling. Terrestrial, Atmospheric & Oceanic Sciences, 22(6).
Lin, I., Liu, W. T., Wu, C. C., Wong, G. T., Hu, C., Chen, Z., ... & Liu, K. K. (2003). New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters, 30(13).
McBride, J. L. (1995). Tropical cyclone formation. Global Perspectives on Tropical Cyclones, 693(2), 63-105.
McPhaden, M. J., Foltz, G. R., Lee, T., Murty, V. S. N., Ravichandran, M., Vecchi, G. A., ... & Yu, L. (2009). Ocean‐atmosphere interactions during cyclone nargis. EOS, Transactions American Geophysical Union, 90(7), 53-54.
Nelson, N. B. (1996). Cover The wake of Hurricane Felix. International Journal of Remote Sensing, 17(15), 2893-2895.
Palmen, E. (1948). On the formation and structure of tropical hurricanes. Geophysica, 3(1), 26-38.
Price, J. F. (1981). Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2), 153-175.
Price, J. F. (2009). Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature?. Ocean Science, 5(3), 351-368
Price, J. F., Morzel, J., & Niiler, P. P. (2008). Warming of SST in the cool wake of a moving hurricane. Journal of Geophysical Research: Oceans, 113(C7).
Price, J. F., T. B. Sanford, & G. Z. Forristall, (1994), Forced stage response to a moving hurricane, J. Phys. Oceanogr., 24, 233–260.
Pun, I. F., Lin, I. I., Wu, C. R., Ko, D. S., & Liu, W. T. (2007). Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1616-1630.
Qiu, B. (1999). Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10), 2471-2486.
Rao, A. D., Joshi, M., Jain, I., & Ravichandran, M. (2010). Response of subsurface waters in the eastern Arabian Sea to tropical cyclones. Estuarine, Coastal and Shelf Science, 89(4), 267-276.
Roemmich, D., & Gilson, J. (2001). Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability?. Journal of Physical Oceanography, 31(3), 675-687.
Scharroo, R., Smith, W. H., & Lillibridge, J. L. (2005). Satellite altimetry and the intensification of Hurricane Katrina. Eos, Transactions American Geophysical Union, 86(40), 366-366.
Shang, S., Li, L., Sun, F., Wu, J., Hu, C., Chen, D., ... & Shang, S. (2008). Changes of temperature and bio‐optical properties in the South China Sea in response to Typhoon Lingling, 2001. Geophysical Research Letters, 35(10).
Shay, L. K., Goni, G. J., & Black, P. G. (2000). Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5), 1366-1383.
Shiah, F. K., Chung, S. W., Kao, S. J., Gong, G. C., & Liu, K. K. (2000). Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Continental Shelf Research, 20(15), 2029-2044. Tsai, Y., Chern, C. S., & Wang, J. (2008). Typhoon induced upper ocean cooling off northeastern Taiwan. Geophysical Research Letters, 35(14).
Sriver, R. L., & Huber, M. (2007). Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447(7144), 577-580.
Tseng, Y. H., Jan, S., Dietrich, D. E., Lin, I. I., Chang, Y. T., & Tang, T. Y. (2010). Modeled oceanic response and sea surface cooling to typhoon. Atmos. Ocean. Sci., 21, 85-98
Walker, N., Myint, S., Babin, A., & Haag, A. (2003). Advances in satellite radiometry for the surveillance of surface temperatures, ocean eddies and upwelling processes in the Gulf of Mexico using GOES‐8 measurements during summer. Geophysical Research Letters, 30(16).
Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742), 1844-1846.
Wentz, F. J., Gentemann, C., Smith, D., & Chelton, D. (2000). Satellite measurements of sea surface temperature through clouds. Science, 288(5467), 847-850.
Wu, C. R., Chang, Y. L., Oey, L. Y., Chang, C. W., & Hsin, Y. C. (2008). Air‐sea interaction between tropical cyclone Nari and Kuroshio. Geophysical research letters, 35(12).
Wu, C. C., Lee, C. Y., & Lin, I. I. (2007). The effect of the ocean eddy on tropical cyclone intensity. Journal of the Atmospheric Sciences, 64(10), 3562-3578.
Wu, C. C., Lin, P. H., Aberson, S., Yeh, T. C., Huang, W. P., Chou, K. H., ... & Lin, I. I. (2005). Dropwindsonde observations for typhoon surveillance near the Taiwan region (DOTSTAR): An overview. Bulletin of the American Meteorological Society, 86(6), 787-790.
Yasuda, I., Okuda, K., & Hirai, M. (1992). Evolution of a Kuroshio warm-core ring—variability of the hydrographic structure. Deep Sea Research Part A. Oceanographic Research Papers, 39, S131-S161.
Yablonsky, R. M., & Ginis, I. (2009). Limitation of one-dimensional ocean models for coupled hurricane-ocean model forecasts. Monthly Weather Review,137(12), 4410-4419.
Yu, H. C., & Yu, C. S. (2011). Development and application of an operational tide and storm surge prediction model for the seas around Taiwan. China Ocean Engineering, 25, 591-608.
Zavala-Hidalgo, J., Morey, S. L., & O'Brien, J. J. (2003). Cyclonic eddies northeast of the Campeche Bank from altimetry data. Journal of physical oceanography, 33(3), 623-629.
Zedler, S. E., Niiler, P. P., Stammer, D., Terrill, E., & Morzel, J. (2009). Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds. Journal of Geophysical Research: Oceans, 114(C4).
Zheng, Z. W., Ho, C. R., & Kuo, N. J. (2008). Importance of pre‐existing oceanic conditions to upper ocean response induced by Super Typhoon Hai‐Tang. Geophysical Research Letters, 35(20).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code