Responsive image
博碩士論文 etd-0808117-030144 詳細資訊
Title page for etd-0808117-030144
論文名稱
Title
應用FLOW-3D於波揚及溯升之數值模擬
Numerical Simulation by FLOW-3D on the Wave Set-up and Run-up
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-09-08
關鍵字
Keywords
溯升、數值模擬、FLOW-3D、波揚、碎波
numerical simulation, FLOW-3D, wave run-up, wave break, wave set-up
統計
Statistics
本論文已被瀏覽 5764 次,被下載 32
The thesis/dissertation has been browsed 5764 times, has been downloaded 32 times.
中文摘要
以往求海岸堤上之溯升資料皆是用外海之最大波高來推算(如一般海堤常採用重現期五十年之颱風暴浪),然週期相同而波高越大的波,尖銳度亦較大,更容易因淺化而提早碎波,反之,越小的波浪碎波時間發生的越晚,故當吾人使用外海的最大波高來模擬堤上溯升高,卻可能發生此一波浪在距離海堤相當遙遠的地方即發生碎波,波浪傳遞致海堤時已經非常小,而較小的外海波高碎波地點離岸邊較近,到達堤上時的溯升及波揚是否會比前者更大,此議題即為本文的主要探討方向。
  本研究使用計算流體力學軟體FLOW-3D進行模擬,底床為不透水斜坡,坡度有1/10、1/20及1/30三種案例,在斜坡末端水深為零處設一不透水海堤。本研究使用FLOW-3D的內建造波邊界來造波,藉由改變波浪週期、波高及坡度等參數,觀察並紀錄波浪行進於斜坡底床的碎波過程及到達海堤之相關數據(如波高、平均水位及溯升高等)。
  根據FLOW-3D模擬之結果顯示,碎波水深較小下,堤腳處平均水位與入射波高之比值比碎波水深較大時為大。過往的研究對於決定溯升高之變數大多皆有坡度參與其中,然本研究的結果顯示,海底坡度較緩的環境下,坡度對於溯升高的影響並不重要。陡坡的溯升高與週期成正相關,緩坡之溯升高則與週期無明顯關係。在溯升高與經驗式的比較結果中,緩坡與陡坡之模擬值與較為接近的經驗式並不相同,代表各經驗式可能有其較為準確適用的坡度範圍。





關鍵字:碎波、波揚、溯升、數值模擬、FLOW-3D
Abstract
The calculation of run-up is usually estimated by the offshore maximum wave height. Nevertheless, the higher wave height with the same period result in larger wave steepness. A wave will break earlier by the shoaling effect with larger wave steepness. On the contrary, A wave will break later with smaller wave steepness. Therefore, the major issue of this study is to analysis whether the wave result in larger run-up and set-up with larger wave steepness or not.
A computational fluid dynamics software called “FLOW-3D” is used to simulate this study. There are three kinds of slope 1/10, 1/20 and 1/30 used for impermeable bottom. An impermeable embankment is set at the end of the slope. Observe and record related data such as mean water level, run-up, etc. by changing period, wave height and slope.
According to the results of FLOW-3D, the ratio of mean water level in front of embankment to incident wave height for smaller breaking depth is larger than larger breaking depth. The most former research indicates that slope is a crucial parameter for wave run-up. Nevertheless, slope effects wave run-up slightly on a gentle slope. Wave run-up displays positive correlation to wave period on a steep slope. On a gentle slope, wave run-up is not related to wave period. The consequences of the comparison between model and experience indicate each experimental equation may show the exacter solution at specific slope.



Keywords: wave break, wave set-up, wave run-up, numerical simulation, FLOW-3D
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 1
1-3 研究流程 2
1-4 研究架構 2
第二章 文獻回顧 4
2-1 理論解析之相關文獻回顧 4
2-2 水工試驗之相關文獻回顧 6
2-3 數值模擬之相關文獻回顧 10
2-4 FLOW-3D之相關文獻回顧 10
第三章 數值模式 13
3-1 FLOW-3D軟體介紹 13
3-2 基本控制方程式 13
3-2-1 Naiver-Stokes Equation 14
3-2-2 Naiver-Stokes Equation 14
3-3 數值模擬設定 19
3-3-1 模式建立 19
3-3-2 數據輸出 24
3-4 碎波條件數據分析 25
3-5 溯升數據分析 25
3-6 網格獨立性測試 26
3-6-1 自由液面 26
第四章 結果與討論 28
4-1 波揚模擬結果分析 28
4-1-1 不同坡度比較 28
4-1-2 不同週期比較 31
4-1-3 平均水位模擬結果與經驗式比較 33
4-2 溯升模擬結果分析 37
4-2-1 不同坡度比較 37
4-2-2 不同週期比較 42
4-2-3 溯升模擬結果與經驗式比較 46
第五章 結論與建議 54
5-1 結論 54
5-2 建議 55
參考文獻 56
附錄一、坡度1/10案例碎波相關數據 60
附錄二、坡度1/20案例碎波相關數據 62
附錄三、坡度1/30案例碎波相關數據 64
參考文獻 References
1. Battjes, J.A. (1974a). Surf similarity. Proceedings of the 14th International Coastal Engineering, Vol. 1, American Society of Civil Engineers, pp. 466-480.
2. Biesel, F. (1952). Study of wave propagation in water of gradually varying depth. U.S National Bureau of Standards, Gravity Waves, NBS Circular 521, pp. 243-253.
3. Bowen A. J., Inman D. L. and Simons V. P. (1968). Wave set-up and set-down. J. Geophys. Res., Vol. 73, No. 8, pp. 2569-2577.
4. Bradford, S. F. (2000). Numerical simulation of surf zone dynamics. J. Waterw. Port, Coast. Ocean Eng., Vol. 126, No.1, pp. 1–13.
5. Bridges, T.J. (2009). Wave breaking and the surface velocity field for three-dimensional water waves. Nonlinearity, 22, pp. 946-953.
6. Buldakov, E.V., Taylor, P.H. and Taylor, R.E. (2006). New asymptotic description of nonlinear water waves in Lagrangian Coordinates. Journal of Fluid Mechanics, Vol. 562, pp. 431-444.
7. Chen, Y.Y., Hsu, H.C., Chen, G.Y. and Hwung, H.H. (2006). Theoretical analysis for surface waves propagation on sloping bottoms, Part 2. Wave Motion, Vol. 43, pp. 339-356.
8. Chen, Y.Y. and Hsu, H.C. (2009). A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates. Chinese Physics B, Vol. 18, pp. 861-871.
9. Chen, Y.Y., Hsu, H.C. and Chen, G.Y. (2010.). Lagrangian experiment and solution for irrotational finite-amplitude progressive gravity waves at uniform depth. Fluid Dynamics Research, Vol. 42, pp. 045501.
10. Chen, Y.Y., Hwung, H.H. and Hsu, H.C. (2005). Theoretical analysis of surface waves propagation on sloping bottoms part 1. Wave Motion, Vol. 42, pp. 335-351.
11. Christensen, E.D. and Deigaard, R. (2001). Large eddy simulation of breaking waves. Coastal Engineering, Vol. 45(1), pp. 53-86.
12. Dean, R.G. (1968). Breaking wave criteria: A study employing a numerical wave theory. Proc. 11th Conf. Coastal Eng., 1: 108-123.
13. Douglass, S.L. (1992). Estimating extreme values of run-up on beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 118, No. 2, American Society of Civil Engineers, pp.220-224.
14. EurOtop Overtopping Manual (2007). Wave overtopping of sea defences and related structures: assessment Manual. www.overtoppingmanual.com
15. Gerstner, F.J. (1802). Theorie de wellen. Abh. d. K. bohm. Ges. Wiss. reprinted in Ann der Physik, Vol. 32, pp. 412-440.
16. Goda, Y. (1974). New wave pressure formula for composite breakwater. Proceedings of 14th International Conference on Coastal Engineering, pp. 1702-1720.
17. Goda, Y. (1975). Irregular wave deformation in the surf zone. Coastal Engineering In Japan, Vol. 18, pp. 13-26.
18. Holman, R.A. (1986). Extreme value statistics for wave run-up on a natural beach. Coastal Engineering, Vol. 9, No. 6,pp. 649-661.
19. Horikawa, K. and Kuo C. T. (1966). A study of wave transformation inside surf zone. Proceedings of 10th International Conference on Coastal Engineering, Tokyo, ASCE, pp. 405-418.
20. Hunt, I.A. (1959). Design of seawalls and breakwaters. Journal of Waterways and Harbours Division 85: 123-152.
21. Iversen, H.W. (1952). Waves and breakers in shoaling water. Proceedings of 3rd International Conference on Coastal Engineering, pp. 1-12.
22. Lemos, C.M. (1992). Wave breaking. Springer-Verlag.
23. Longuet-Higgins M.S. and Stewart, R.W. (1960). Changes in the form of short gravity waves on long waves and tidal current. J. Fluid Mech., vol. 8, pp. 565-583.
24. Longuet-Higgins M.S. and Stewart, R.W. (1964). Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res., vol. 11, pp. 529-562.
25. Longuet-Higgins M.S. (1980). On the forming of sharp corners at a free surface. Proc. R. Soc. London. Ser. A, 360, pp. 471-488.
26. Longuet-Higgins M.S. (1981). On the overturning of gravity waves. Proc. R. Soc. London. Ser. A, 376, pp. 377-400.
27. Mase, H. (1989). Random wave run-up height on gentle slope. Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 115, No. 5, American Society of Civil Engineers, pp. 649-661.
28. McCowan, J. (1894). On the highest wave of permanent type. Philosophical Magazine, Vol. 38, pp. 351–358.
29. Michell, J. H. (1893). On the highest waves in water. Philos. Mag. Ser. 5, pp. 365, 430–437.
30. Rankine, W.J.M. (1863). On the exact form of waves near the surface of deep water. Philosophical Transactions of the Royal Society of London, Vol. 153, pp. 127-138.
31. Sanderson, B. (1985). A Lagrangian solution for internal waves. Journal of Fluid Mechanics, Vol. 152, pp. 191-137.
32. Tang, L. W. (1966). Coastal Engineering researches on the western coast of Taiwan. Proceedings of 10th International Conference on Coastal Engineering, pp. 1274-1290.
33. Ting, F.C.K. and Kirby, J.T. (1994). Observation of undertow and turbulence in a laboratory surf zone. Coastal Engineering, Vol . 24, pp.51-80.
34. Ting, F.C.K. and Kirby, J.T. (1995). Dynamics of surf zone turbulence in a strong plunging breaker. Coastal Engineering, Vol. 24, pp.177-204.
35. Ting, F.C.K. and Kirby, J.T. (1996). Dynamics of surf zone turbulence in a spilling breaker. Coastal Engineering, Vol. 27, pp.131-160.
36. Tsai, C.P., Chen, H.B., Hwung and H.H., Hwuang, M.J. (2005). Examination of empirical formulas for wave shoaling and breaking on steep slopes. Ocean Engineering, Vol. 32, pp. 469-483.
37. Van Der Meer, J.W. and Stam, C.J.M. (1992). Wave runup on smooth and rock slopes of coastal structures. Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 118, No. 5, American Society of Civil Engineers, pp. 534-550.
38. Van Dorn W. G. (1976). Set-up and run-up in shoaling breakers. Proc. 15th Conf. on Coastal Eng., ASCE, pp. 738-751
39. Yang, K.S., Chen, Y.Y., Li, M.S. and Hsu, H.C. (2013). Theoretical and experimental study of breaking wave on sloping bottoms. China Ocean Engineering, (submitted).
40. Zhao, Q., S. Armfield, and K. Tanimoto (2004). Numerical simulation of breaking waves by a multi–scale turbulence model. Coastal Eng., Vol. 51, pp.53–80.
41. 李怡婷(2011),「以海岸水動力及海岸漂沙劃設海岸緩衝區」,國立成功大學海洋科技與事務研究所博士論文。
42. 林朝福、陳瓊汝、林芳如(2001),「潛堤對平台式拋石堤穩定性之影響」,第23 屆海洋工程研討會,第280-286 頁。
43. 林義復(2008),「應用計算流力模擬船舶岸壁效應之研究」,國立高雄海洋科技大學海事學院航海科技研究所碩士論文。
44. 陳陽益(1994a),「等深水中非旋轉性的自由表面前進重力波之Lagrangian方式的攝動解析」,第十六屆海洋工程研討會論文集,A1頁-A29頁。
45. 陳陽益(1994b),「等深水中非旋轉性的自由表面重力駐波之Lagrangian方式的攝動解析」,第十六屆海洋工程研討會論文集,A30頁-A59頁。
46. 陳陽益、湯麟武(1992),「平緩坡度底床上前進的表面波」,第十四屆海洋工程研討會論文集,第1-22 頁。
47. 陳陽益(1997),「平緩坡度底床上前進的表面波」,第十九屆海洋工程研討會論文集,第112-121 頁。
48. 陳陽益、張富東(1999),「平緩坡度底床上前進波的試驗研究」,第二十一屆海洋工程研討會論文集,第165-174 頁。
49. 陳陽益、黃啟暘(2000),「Lagrangian方式下平緩底床上之前進波」,第二十二屆海洋工程研討會論文集,79頁-88頁。
50. 陳俊合(2012),「FLOW-3D應用於孔隙結構物消波特性之研究」,國立中山大學海洋環境及工程學系碩士論文。
51. 陳俞任(2012),「以 Flow-3D 模擬內孤立波越過障礙物之行為」,國立中山大學海洋環境及工程學系碩士論文。
52. 陳建宇(2007),「環圈堆保護橋墩之試驗及其三維流場之數值模擬」,國立成功大學水利及海洋工程研究所碩士論文。
53. 黃聰憲(2007),「漏斗式排砂器水流特性及排砂效率之試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
54. 楊政翰(2008),「FLOW-3D 應用於土石流防砂壩前流場及衝擊力研究」,國立成功大學水利及海洋工程學系碩士論文。
55. 褚懷宇(2010),「波浪與複合式透水結構物交互作用之研究」,國立台灣海洋大學河海工程學系碩士論文。
56. 劉家齊(2015),「應用FLOW-3D模擬橋墩周圍流場及底床沖刷之研究」,國立成功大學水利及海洋工程學系碩士論文。
57. 賴堅戊(2009),「波浪於粗粒徑斜坡底床傳遞之試驗與數值研究」,國立成功大學水利及海洋工程學系博士論文。
58. 蕭凱文(2014),「應用FLOW-3D模擬斜坡矩形束縮渠道之斜震波研究」,國立成功大學水利及海洋工程學系碩士論文。
59. 魏文駿(2004),「碎波於斜坡後平台上水位抬生之試驗研究」,國立中山大學海洋環境及工程學系碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code