Responsive image
博碩士論文 etd-0808117-150436 詳細資訊
Title page for etd-0808117-150436
論文名稱
Title
裝置對裝置通訊下資源配置與功率控制之著色演算法
Joint Resource Block Allocation and Power Control with Graph Coloring Algorithm in Device-to-Device Communication
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-24
繳交日期
Date of Submission
2017-09-08
關鍵字
Keywords
著色理論、長期演進技術、第三代合作夥伴計畫、裝置對裝置通訊、服務品質
3rd Generation Partnership Project, Device-to-Device Communication, Graph Coloring, Quality of Service, Long Term Evolution
統計
Statistics
本論文已被瀏覽 5648 次,被下載 16
The thesis/dissertation has been browsed 5648 times, has been downloaded 16 times.
中文摘要
由於近年來無線網路的使用者增加迅速,為了能夠支援更多的使用者,第三代合作夥伴計畫(3rd Generation Partnership Project,3GPP)在release 12 [1]的標準中提出了一個新的技術叫做裝置對裝置通訊(Device-to-Device Communication,D2D Communication),這項技術可以令兩個使用者裝置(User Equipment,UE)不用靠基地台(E-UTRAN Node B,eNB)進行傳輸,進而減少因為距離等因素上的訊號衰減,但共用資源的使用者裝置之間的干擾是一個相當重要的議題。
本篇論文提出了資源配置與能量控制著色演算法(Resource Allocation and Power Control with Coloring Algorithm,RAPCC Algo.),並加入新的共用資源機制,令D2D pair之間可以在沒有CUE的情況下共用資源,在CUE對D2D pair干擾強烈時,可以增加資源區塊配置的彈性,並設計一個兩階段的演算法,第一階段根據通道狀況和利用發送功率的控制去分配資源區塊給多個使用者,以著色理論的概念將使用者分群,接著第二階段優化分群的結果,在滿足服務品質(Quality of Service,QoS)的條件下,搜尋使用者並協調互相共用資源的使用者裝置功率,盡可能使整體資源區塊能支援的使用者連線數量最大化,最後再進一步的調高分配到資源的使用者裝置功率,以提高整體的吞吐量為目的。
最後在模擬結果的部分,本篇論文的方法能有效地增加整體資源區塊分配給使用者連線的數量,進而提高資源區塊的使用效率。
Abstract
With the growth of the wireless network users, Device-to-Device (D2D) Communication was proposed in 3GPP release 12. The technology has been proven as an efficient technique to improve spectrum efficiency because of three gains (hop gain, proximity gain, and reuse gain). In cellular networks, the interference among spectrum-reusing links becomes a problem whereas we enjoy advantages of D2D communication.
To overcome the above problem, this paper would focus on maximizing overall system user capacity and add new reuse pattern. Our new reuse pattern will let D2D pairs reuse resource block without CUEs. It would increase the flexibility of resource block allocation. We designed a two-phase algorithm named Resource Allocation and Power Control with Coloring Algorithm (RAPCC Algo.). First, adopting the graph coloring concept, the users are classified into many groups according to channel states of devices. Next, under the quality of service (QoS) conditions, groups would search for more members and coordinate interference. At the end of the second algorithm, in order to increase throughput, we adjust the power of devices.
By these ways, simulation results show that our algorithm will increase the number of resource block allocations and then improve the efficiency of resource blocks.
目次 Table of Contents
學位論文審定書 i
論文公開授權書 ii
論文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 導論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 5
第二章 相關背景與研究 6
2.1 長期演進技術(LTE)架構簡介 6
2.2 LTE存取技術 8
2.2.1 正交分頻多重存取技術 (OFDMA) 8
2.2.2 單載波分類多工存取技術 (SC-FDMA) 9
2.2.3 通報品質指標 (Channel Quality Indicator) 9
2.2.4 資源區塊 (Physical Resource Block) 10
2.3 裝置對裝置通訊 (D2D Communication) 12
2.3.1 基本架構 12
2.3.2 裝置搜尋 13
2.3.3 傳輸流程 15
2.4 著色理論(Graph Coloring) 17
2.5 相關文獻 18
第三章 研究方法 21
3.1 系統架構 21
3.2 功率控制 23
3.3 使用者裝置(UE)通訊品質 24
3.4 最佳化問題 27
3.5 二階段演算法 32
3.5.1. 貪婪著色演算法 33
3.5.2. 能量配置演算法 35
3.5.3. 配對優化演算法 35
3.5.4. 搜尋演算法 40
3.5.5. SINR優化演算法 42
3.5.6. 演算法分析 44
第四章 效能分析 47
4.1 模擬參數設定 47
4.2 模擬結果與分析 50
第五章 結論 63
參考文獻 64
參考文獻 References
[1] A. Roessler, J. Schlienz, S. Merkel, and M. Kottkamp, “LTE-Advanced (3GPP Rel.12) Technology Introduction,” White Paper, pp.13-27, Apr. 2015.
[2] 3GPP TS 25.913, v9.0.0, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN),” Dec. 2009.
[3] 3GPP TS 36.331, v13.2.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC)," Dec. 2015.
[4] T.C. Ho and Y.N. Chang, “Design of an OFDM Baseband Processor and Synchronization Circuits for IEEE802.11a Wireless LAN Standard,” National Sun Yat-sen University, Kaohsiung, Taiwan, Jul. 2004.
[5] H. Holma and A. Toskala, “LTE for UMTS: OFDMA and SC-FDMA Based Radio Access,” John Wiley & Sons, ISBN: 978-0-470-99401-6, 2009.
[6] 3GPP TR 36.213, v12.4.0, “Physical layer procedures,” Dec. 2014.
[7] 3GPP TS 36.211 V8.9.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation,” Jan. 2010.
[8] 3GPP TS 36.101 V8.15.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception,” Dec. 2011.
[9] 3GPP TR 32.844, v12.0.0, “Technical Specification Group Service and System Aspects; Study of charging support of Proximity-based Services (ProSe) Direct Communication for Public Safety use,” Dec. 2014.
[10] 3GPP TR 23.703, v12.0.0, “Technical Specification Group Services and System Aspect; Study on architecture enhancements to support Proximity-based Services (ProSe),” Feb. 2014.
[11] L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator Controlled Device-to-Device Communications in LTE-Advanced Networks,” IEEE Wireless Communication, pp. 96-104, Jun 2012.
[12] K.P Sharmila, V. Mohan, Dr.C Ramesh, and S.P. Munda, “Proximity Services based Device-to-Device Framework Design for Direct Discovery,” AEEICB, pp. 499-502, Feb. 2016.
[13] D. Tsolkas, E. Liotou, N. Passas, and L. Merakos, “LTE-A Access, Core, and Protocol Architecture for D2D Communication,” pp. 23-40, ISBN: 978-3-319-04962-5, Apr. 2014
[14] T. R. Jensen, B. Toft, "Graph Coloring Problems", Wiley-Interscience, ISBN: 978-0-471-02865-9, Dec. 1994.
[15] X. Cai, J. Zheng, and Y. Zhang, “A Graph-Coloring Based Resource Allocation Algorithm for D2D Communication in Cellular Network,” IEEE ICC., pp. 5429-5434, Apr. 2015.
[16] Y. Wu, W. Liu, S. Wang, W. Guo, and X. Chu, “Network Coding in Device-to-Device Communication Underlaying Cellular Networks,” IEEE ICC., pp. 2072-2077, Apr. 2015.
[17] J.Y. Pan, Y.Y. Liu, “Device-to-Device Interference Avoidance Underlaying Cellular Downlink Transmission,” IEICE, pp. 464-469, Oct. 2015.
[18] F. Hajiaghajani, M. Rasti, “Downlink Resource Reuse for Device-to-Device Communication Underlaying Cellular Networks Using A Generalized Knapsack Framework,” IEEE CCNC, Jan. 2016.
[19] Y. Li, M. Sheng, Y. Zhu, T. Jiang, and J. Li, “Sum Rate Maximization in Underlay SCMA Device-to-Device Networks,” IEEE GLOBECOM, Dec. 2016.
[20] Y. Cai, F. Richard Yu, C. Liang, B.Sun, and Q. Yan, “Software-Defined Device-to-Device Communication in Virtual Wireless Networks With Imperfect Network State Information (NSI),” IEEE Trans. on Vehicular Technology, pp. 7349-7360, Sep. 2016.
[21] D. Tsolkas, E. Liotou, N. Passas, and L. Merakos, “A Graph-Coloring Secondary Resource Allocation for D2D Communications in LTE Networks,” IEEE CAMAD., pp. 56-60, Sep. 2012.
[22] G. Yu, L. Xu, D. Feng, R. Yin, G.Y. Li, and Y. Jiang, “Joint Mode Selection and Resource Allocation for Device-to-Device Communication,” IEEE Trans. Communication, pp. 3814-3824, Nov. 2014.
[23] H. Xu, W. Xu, Z. Yang, Y. Pan, J. Shi, M. Chen, “Energy-Efficient Resource Allocation in D2D Underlaid Cellular Uplinks,” IEEE Communication Letter, pp. 560-563, Mar. 2017.
[24] D.D. Penda, L. Fu, and M. Johansson, “Energy Efficient D2D Communications in Dynamic TDD Systems,” IEEE Trans. Communication, pp. 1260-1273, Mar. 2017.
[25] T.Yang, R. Zhang, X. Cheng, L. Yang, “Resource Sharing for Device-to-Device Communications Underlaying Full-Duplex Cellular Networks, “ IEEE ICCS, pp. 16-20, Nov. 2014.
[26] Y. Zhang, F. Li, M.A.A. Al-qaness, and X. Luan, “A Resource Allocation Scheme for Multi-D2D for Multi-D2D Communication Underlying Cellular Netowrks with Multi-Subcarrier Reusing,” MDPI, Jan. 2017.
[27] K.Y. Chen, J.C. Kao, S.A Ciou, and S.H. Lin, “Joint Resource Block Reuse and Power Control for Multi-Sharing D2D Communication,” IEEE VTC-Fall, Sep. 2016.
[28] M. Haenggi, J.G. Andrews, F. Baccelli, O.Dousse and M. Franceschetti, “Stochastic Geometry and Random Graphs for the Analysis and Design of Wireless Networks,” IEEE Selected Areas in Communication, pp. 1929-1046, Sep. 2009.
[29] Luca Mencarelli, “Introduction to Mixed Integer Nonlinear Programming,” May 2014.
[30] P.K. Polisetty and E.P. Gatzke, “A Decomposition-based MINLP Solution Method Using Piecewise Linear Relaxations,” ITOR, International Transactions on Operations Research, Jan. 2005.
[31] W. Chang, Y.T. Jau, S.L. Lu and Y. Lee, “Gale-Shapley-Algorithm Based Resource Allocation Scheme for Device-to-Device Communication Underlaying Downlink Cellular Networks,” IEEE Communication, Sep. 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code