Responsive image
博碩士論文 etd-0808117-151716 詳細資訊
Title page for etd-0808117-151716
論文名稱
Title
利用薩格涅特光刻技術製作具光旋性菲涅爾液晶透鏡之研究
The study of Fresnel lens in twisted-nematic liquid crystal fabricated by Sagnac interferometer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-09-08
關鍵字
Keywords
可複寫、薩格涅特干涉儀、菲涅爾透鏡、光配向、偶氮染料
Sagnac interferometer, Fresnel lens, photo-alignment, azo dyes, rewritable
統計
Statistics
本論文已被瀏覽 5691 次,被下載 23
The thesis/dissertation has been browsed 5691 times, has been downloaded 23 times.
中文摘要
本論文利用薩格涅特干涉儀進行光配向製作聚焦效率與焦距可調的菲涅爾液晶透鏡。激發光經由薩格涅特干涉儀產生類菲涅爾圖案後,照射於偶氮染料與液晶的混合材料中,在受光區域的染料分子會產生光致異構化效應而形成光配向,染料分子在進行一連串的trans與cis反應後,會誘導液晶分子的排列方向最終與激發光的偏振方向垂直,造成樣品中受光奇數區與不受光偶數區的液晶具有不同排列結構,使得偵測紅光通過樣品後會因相鄰兩區間結構不同產生的相位差異而形成聚焦效果。此菲涅爾液晶透鏡可利用外加電壓的方式調控聚焦效率的變化,實驗結果顯示當施加電壓為3.1 V時,透鏡的聚焦效率可達31.5 %。另外,此透鏡樣品的光配向效果可經由加熱的方式抹除,並重新寫入新的類菲涅爾圖案,達到可複寫的效果。
Abstract
This study presents a focusing efficiency and focal length tunable Fresnel lens with liquid crystals fabricated by a Sagnac interferometer. When the Fresnel-pattern green beam, formed by the Sagnac interferometer, is irradiated on the azo-dye doped liquid-crystal mixture, the azo-dye molecules will undergo the trans-cis photoisomerization and then generate photo-alignment effect in the bright (odd) zone, which results that the direction of liquid-crystal molecules will perpendicular to the linearly polarized pump beam. The various structures of liquid crystals in the odd and even zones will produce the phase difference, resulting in a Fresnel lens generated. The focusing efficiency of proposed Fresnel lens can be controlled by the external AC voltages. The experimental results show that the focusing efficiency can reach its maximum of 31.5 % under applied voltage of 3.1 V. In addition, the photo-alignment effect of azo dyes can be erased through the thermally method and rewritten by the pump beam with different Fresnel-like pattern, which leads to the Fresnel lens with various focal lengths.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 ix
表次 xiii
第一章 簡介 1
1.1 前言 1
1.2 液晶簡介 2
1.2.1 液晶的發現 2
1.2.2 何謂液晶 2
1.3 液晶的分類 3
1.4 液晶物理 9
1.4.1 光學異向性 9
1.4.2 介電異向性 12
1.4.3 彈性連續體理論 13
1.4.4 液晶配向 14
1.4.5 Freedericksz transition 15

第二章 相關理論 17
2.1 偶氮染料 17
2.2 光配向機制 17
2.2.1 photo-isomerization 17
2.2.2 photo-crosslink 18
2.2.3 photo-degeneration 18
2.3 光引致液晶分子轉向效應 19
2.3.1 正力矩效應 19
2.3.2 負力矩效應 21
2.3.3 吸附效應 22
2.4 賓主效應 23
2.5 菲涅爾透鏡 23
2.5.1 菲涅爾透鏡的理論 23
2.5.2 相位型菲涅爾透鏡的理論 24
2.6 薩格涅特干涉儀 28

第三章 樣品製作與儀器架設 29
3.1 材料介紹 29
3.2 樣品製作 31
3.2.1 偶氮染料摻雜液晶 31
3.2.2 液晶樣品製作 31
3.3 實驗架設 32
3.3.1 具類菲涅爾圖案之激發光的光學分析 32
3.3.2 探討菲涅爾透鏡之焦點強度隨時間變化的關係 33
3.3.3 觀察樣品在偏光顯微鏡下的光學變化 34
3.3.4 探討樣品聚焦隨施加電壓的變化 34
3.3.5 樣品複寫特性的探討 35

第四章 實驗結果與討論 36
4.1 具類菲涅爾圖案之激發光的光學分析 36
4.2 菲涅爾透鏡之聚焦強度隨激發時間變化的探討 37
4.3 透鏡聚焦效率隨施加電壓變化的探討 40
4.4 菲涅爾液晶透鏡對偵測光偏振的依賴性探討 43
4.5 探討透鏡樣品的複寫特性 44

第五章 總結與未來展望 46
5.1 總結 46
5.2 未來展望 48
參考文獻 49
參考文獻 References
[1] R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[2] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80(6), 1088–1090 (2002).
[3] S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn. J. Appl. Phys. 24(8), L626–L628 (1985).
[4] S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[5] M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[6] T. Fujita, H. Nishihara, and J. Koyama, “Fabrication of micro lenses using electron- beam lithography,” Opt. Lett. 6(12), 613–615 (1981).
[7] J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29(7), 931–936 (1990).
[8] T.-H. Lin, Y. Huang, Andy Y. G. Fuh, and S.-T. Wu, “Polarization controllable Fresnel lens using dye doped liquid crystals,” Opt. Express 14(6), 2359–2364 (2006).
[9] L.-C. Lin, K.-T. Cheng, C.-K. Liu, C.-L. Ting, H.-C. Jau, T.-H. Lin, and Andy Y.-G. Fuh, “Fresnel lenses based on dye-doped liquid crystals,” Proc. SPIE 6911, 69110I (2008).

[10] K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1873 (2000).
[11] C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46(7A), 4144–4147 (2007).
[12] Y. Lou, Q. Liu, H. Wang, Y. Shi, and S. He, “Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens,” Appl. Opt. 49(26), 4995–5000 (2010).
[13] H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87(6), 64001 (2009).
[14] H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50(22), 4295–4301 (2011).
[15] F. Reinitzer, “Contributions to the knowledge of cholesterol,” Liq. Cryst. 5(1), 7–18 (1989).
[16] M. L. Magnuson, B. M. Fung, and J. P. Bayle, “On the temperature dependence of the order parameter of liquid crystals over a wide nematic range,” Liq. Cryst. 19(6), 823–832 (1995).
[17] R. B. Meyer, L. Lie´bert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystal,” J. Phys. Lett. 36(3), 69–71 (1975).
[18] C. W. Oseen, “The theory of liquid crystals”, Trans. Faraday Soc. 29(140), 883–899 (1933).
[19] F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[20] L. M. Blinov and V.G. Chigrinov, Electrooptic effects in liquid crystal materials, (Springer, 1993), Chapter 2.
[21] T. Uchida and M. Wada, “Guest-host type liquid crystal displays,” Mol. Cryst. Liq. Cryst. 63(1), 19–43 (1981).
[22] S. G. Cloutier, D. A. Peyrot, T. V. Galstian, and R. A. Lessard, “Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography,” J. Opt. A 4(6), S228–S234 (2002).
[23] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrnov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1), 2155–2164 (1992).
[24] O. Yaroshchuk, L. G. Cada, M. Sonpatki, and L.-C. Chien, “Liquid-crystal photoalignment using low-molecular-weight photo-cross-linkable composites,” Appl. Phys. Lett. 79(1), 30–32 (2001).
[25] M. Nishikawa, T. Kosa, and J. L. West, “Effect of chemical structures of polyimides on unidirectional liquid crystal alignment produced by a polarized ultraviolet-light exposure,” Jpn. J. Appl. Phys. 38(3B), L334–L337 (1999).
[26] I. Janossy, L. Csillag and A. D. Lloyd, “Temperature dependence of the optical Freedericksz transition in dyed nematic liquid crystals,” Phys. Rev. A 44(12), 8410–8413 (1991).
[27] I. Janossy, A. D. Lloyd, and B. S. Wherrett “Anomalous optical Freedericksz transition in an absorbing liquid crystal,” Mol. Cryst. Liq. Cryst. 179(1), 1–12 (1990).
[28] T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excition transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107(22), 9319–9325 (1997).
[29] T. Kosa and I. Janossy, “Anomalous wavelength dependence of the dye-induced optical reorientation in nematic liquid crystals,” Opt. Lett. 20(11), 1230–1232 (1995).
[30] I. Janossy and T. Kosa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals.” Opt. Lett. 17(17), 1183–1185 (1992).
[31] B. Saad, M. M. Denariez-Roberge, and T. V. Galstyan, “Diffusion of photoexcited azo dye in a liquid-crystal host,” Opt. Lett. 23(9), 727–729 (1998).
[32] I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped liquid crystal.” IEEE J. Quant. 29(5), 1444–1447 (1993).
[33] I. Ja´nossy and L. Szabados, “Optical reorientation of nematic liquid crystals in the presence of photoisomerization,” Phys. Rev. E 58(4), 4598–4604 (1998).
[34] W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[35] F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22(8), 549–551 (1997).
[36] K. Rastani, A. Marrakchi, S. F. Habiby, W. M. Hubbard, H. Gilchrist, and R. E. Nahory, ”Binary phase Fresnel lenses for generation of two-dimensional beam arrays,” Appl. Opt. 30(11), 1347–1354 (1991).
[37] C.-H. Lin, Y.-Y. Wang, and C.-W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
[38] L.-C. Lin, H.-C. Jau, T.-H. Lin, and Andy Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code