Responsive image
博碩士論文 etd-0809101-154937 詳細資訊
Title page for etd-0809101-154937
論文名稱
Title
高解析衛星影像之空間定位精度分析及其在淺水深度量測之應用
The Analysis of Positioning Accuracy and The Derivation of Shallow Water Depth by Using High-resolutional Satellite Imageries
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-20
繳交日期
Date of Submission
2001-08-09
關鍵字
Keywords
正射化糾正、推估水深
satellite, high-resolution, ikonos
統計
Statistics
本論文已被瀏覽 5678 次,被下載 7082
The thesis/dissertation has been browsed 5678 times, has been downloaded 7082 times.
中文摘要
中文摘要
1999年9月24日,全球第一顆高解析度商業資源衛星IKONOS-2成功升空後,開啟測量技術應用之新紀元。其最高空間解析度為0.82公尺,解決了以往衛星影像空間解析度的不足,在應用上提供更細緻的空間資訊。而預期在2001年底更有其他高解析度、高光譜衛星即將陸續升空,屆時遙測影像在陸地、海域之應用勢必更為深化與廣泛,將為遙測技術應用帶來新的飛躍性發展。
本論文主要為應用IKONOS多光譜衛星影像來推估近岸水深值為研究目標。研究中有二個重點,其一為探討IKONOS影像之高解析之特性及影像之精密幾何糾正,另一為利用其多光譜影像作為水深資訊之推估工具,期能為近岸水深量測引入高解析衛星遙測科技之新發展。
在影像之精密幾何糾正方面,實驗區是選擇崎嶇的地形為研究對象,探討光束法平差模式對於CARTERRA Geo 等級之影像的適用性,其定位精度在東西向約1.83公尺,南北向約1.35公尺,高程約1.6公尺。若使用光束法平差模式進行正射糾正後之影像,其檢核點之平面精度約達2.04公尺,證明了光束法平差模式對CARTERRA Geo 等級之影像進行幾何糾正是可行的。
利用多光譜影像推估水深資料,則分別以模擬資料與墾丁南灣的實際影像資料,來互相驗證波浪效應在高解析衛星影像的影響。藉著小波多重解析度分析的概念以 Daubechies D4來分離波浪效應,其成果在精度上有顯著的改善,在10公尺內水深值之推估,精度約可達30公分;對於高解析度多光譜衛星影像應用於清澈海域之淺水水深推估,提供新的處理模式與思考方向。

Abstract
Abstract
On September 24, 1999, the first high-resolution commercial nature resource satellite, IKONOS-2, had been successfully launched. This started a new era to the applications of remote sensing. The best resolution of the IKONOS imageries is 0.82m. This imagery provides more detail spatial information than previous satellites. Many high spatial resolution satellites with hyper-spectral imageries will be launched successively by the year of 2002. When the time comes, the application of remotely sensed images in the area of land and sea will certainly be more widespread. Those imageries will be the fundamental data source for digital earth.
The main purpose of this paper is to apply the IKONOS multi-spectral satellite imageries to derive the shallow water depth. Two key studies will be included as follows. The first is to discuss the high-resolution characteristics of IKONOS images and its precise geometrically correction. The other is applying the multi-spectral images to calculate water depth by regression with few field-measured bathymetry. It is anticipated that the high-resolution remote sensing technology will be an alternative tool to the shallow water bathymetric surveying.
The rugged terrain imageries of CARTERRA Geo level in Taipei County were selected and the bundle adjustment was used for precise images geometrically correction. The positioning accuracy is approximate 1.83m for east-west direction, 1.35m for north-south direction, and 1.6m for elevation. If the orthophoto is been rectified by using bundle adjustment method, the horizontal position accuracy of the check points is about 2.04m. In accordance with these results, using bundle adjustment in the CARTERRA Geo level imagery rectification has proved feasible.
In the study of using muti-spectral images to derive the shallow water depth, both simulated data, IKONOS and SPOT satellite images of South Bay in KenTing are used to verify the influence of wave effect in the satellite imageries. By means of the concept of multi-resolution analysis in wavelet theory, the Daubechies D4 coefficients is tried to filter out the wave effect. Significant improvement on the shallow water depth calculation after filtering wave effect is shown in the result. The accuracy of water depth derivation using high resolution is about 30cm for the water depth shallower than 10m. This research proves that derivation of shallow water depth by using high-resolution satellite imagery is feasibility.

目次 Table of Contents
目 錄
誌 謝…………..…………………………………………………………………Ⅰ
中文摘要 ……………………………………………………………………………Ⅱ
英文摘要 ……………………………………………………………………………Ⅲ
目 錄 ……………………………………………………………………………Ⅳ
圖 目 錄…………………………………………………..…………………………Ⅵ
表 目 錄…………………………………………………..…………………………Ⅷ

第一章 導論……………………………………………….. ……………………….1
1-1 前言……………………………………………….. ……………………….1
1-2 文獻回顧……………………………………………….. ………………….2
1-3 研究目的……………………………………………….. ………………….3
1-4 研究方法及流程……………………………………………….. ………….4
1-5 論文架構……………………………………………….. ………………….7

第二章 IKONOS衛星簡介……………………………………………….. ………8
2-1 衛星成像模式……………………………………………….. …………….9
2-2 IKONOS-2攝影測量模式……………………………………………...…10
2-3 IKONOS-2攝影解析度(Resolution) …………………..……………...…11
2-4 IKONOS 販售的影像種類及處理等級…………………..…………..…14
2-4-1 CARTERRA Pro…………………..……………………………14
2-4-2 CARTERRA Reference…………………………..…………..…14
2-4-3 CARTERRA Precision…………………..…………………...…15

第三章 外方位參數之求取…………………..………………………….…...……16
3-1 前言…………………..…………………………….…...…………………16
3-2 附加參數光束法平差模式…………………..……………………………17
3-2-1 函數模式…………………..……………………………………17
3-2-2 附加參數改正之形變…………………..………………………19
3-2-3 觀測方程式之組成…………………..…………………………19
3-2-4 隨機模式…………………..……………………………………22
3-3 實例分析…………………..………………………………………………22
3-3-1 實驗區域資料說明…………………..…………………………23
3-3-2 光束法平差結果…………………..……………………………26
第四章 IKONOS影像的精密的幾何糾正…………………..……………...……33
4-1 前言…………………..……………...………………………………….…33
4-2 IKONOS影像之正射化糾正之模式…………………..……………...…34
4-2-1 函數模式…………………..…………….…………………...…34
4-2-2 非線性方程式求解…………………..…………….………...…35
4-2-3 重新取樣處理(Resampling) …………..…………….………....36
4-3 實例分析…………..…………….…………………………………...…....40
4-3-1 實驗區域資料說明…….…………………………………...…..40
4-3-2 正射化糾正結果…….………………………………….…..…..41

第五章 多光譜影像之水深資料推估…….………………………………….……45
5-1 緣起…….………………………………….………………………………45
5-2 小波基本理論……………………………….………………………….…46
5-2-1 傅立葉轉換的概要(Fourier Transform, FT) ……………….….47
5-2-2 視窗傅立葉轉換(WFT) ……………….……………………….48
5-2-3 連續小波轉換………………….……………………………….49
5-2-4 離散小波轉換……………….………………………………….50
5-2-5 多重解析度分析基本概念….………………………………….51
5-2-5-1 空間觀念….……………………………….…………52
5-2-5-2 濾波器基本概念………………………….………….55
5-2-6 實際計算方法………………………….……………………….57
5-2-6-1 Haar 轉換…………………….………………………57
5-2-6-2 Daubechies D4 轉換………….………………………58
5-2-6-3 轉換處理………….……………………………….….60
5-3 水深資料提取數學模式………….……………………………….………64
5-3-1 比率演算法(Ratio Algorithms).……………………….……….65
5-3-2 清澈海域輻射計與底質係數的關係………………….……….67
5-4 波浪基本性質………………….………………………………………….67
5-5 波浪對輻射量影響…………………….………………………………….70
5-6 模擬分析………………….……………………………………………….74
5-6-1 模擬資料實驗說明……………………………………………75
5-6-2 模擬資料之處理方法…………………………………………75
5-6-3 模擬資料實驗結果……………………………………………79
5-7 實例分析…………………………………………………………………..86
5-7-1 實驗資料說明…………………………………………………86
5-7-2 IKONOS衛星影像多解析度分析比較………………………90
5-7-3 IKONOS衛星影像底質分類…………………………………94
5-7-4 研究水深解算模式……………………………………………98
5-7-5 SPOT衛星影像之比較……………………………………...111
第六章 結論與建議…………………………………………………………...123
參考文獻………………………………………………………….………………...126
參考文獻 References
參考文獻
1. 水村和正 著,徐義人 譯(1992),”海岸海洋工程學”,國立編譯館,第7頁-68頁。
2. 李良輝(1991),”計算視覺方法於SPOT衛星影像之幾何特性分析”,國立中央大學博士論文。
3. 李良輝、林信政(1998),”立體對影像之正射糾正與DTM資料自動化產生之整合處理”, 空載遙測技術應用研討會,第102頁-112頁。
4. 何維信(1993),”航空攝影測量學”,大中國圖書公司,第365頁-444頁。
5. 姚建中(1987),”數位式SPOT影像定位分析”,國立成功大學航空測量研究所碩士論文。
6. 郭一羽 主編(2001),”海岸工程學”,文山書局,第19頁-第32頁。
7. 彭玉華(1999),”小波變換與工程應用”,科學出版社,第36頁-第54頁。
8. 蔡乾財(1997),”單張空載SAR影像於方位參數求解與影像正射化之研究”,國立中央大學土木工程研究所碩士論文。
9. 蔡展榮(1996),”應用小波學理與網格面立體視覺法來重組探測物體表面”,Zeitschrift für Photogrammetrie und Fernerkundung,第3期,第83頁∼第93頁。
10. Ackleson, S. G., and V. Klemas.(1986), “Two-flow simulation of the natural light field within a canopy of submerged aquatic vegetation”, Appl. Opt. 25: pp. 1129-1136.
11. Bierwirth, N., Lee, T., and Burne, R.(1993), “Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery”, Photogramm. Eng. Remote Sens., Vol. 59, No. 3, pp. 331-338.
12. Brown J., Colling A., Park D., Phillips J., Rothery D., and Wright J.(1989), Waves, tides and shallow-water processes, Walton Hall, Milton Keynes, MK7 6AA and Pergamon Press plc, pp. 7-42.
13. Brown, W. L., F. C. Polcyn, and S. R. Stewart(1971), “A method for calculating water depth, attenuation coefficients, and bottom reflectance characteristics”, in Proceedings, Seventh International Symposium on. Remote Sensing of the Environment, Environmental Research Institute of Michigan, Ann Arbor, pp. 663-680.
14. Chen, L. C., and Lee, L.-H. (1993). “Rigorous generation of digital orthophotos from SPOT images”, Photogrammetric Engineering, And Remote Sensing, 59(5), pp. 655-611.
15. Combes, J.M., Grossman, A., Ychamitchian, P. (Eds.)(1989), Wavelets. The time-frequency methods and phase space., Springer-Verlag, Berlin, Heidelberg.
16. Daubechies, I.(1991), Ten lectures on wavelets, CBMS-NSF Series Appl. Math., SIAM
17. Dominique Durand, Je´rome Bijaoui, and Francois Cauneau (2000),”Optical remote sensing of shallow-water environmental parameters: A feasibility study”, Remote Sensing of Environment, Vol. 73, Issue: 2, pp. 152-161.
18. Duntley, S. Q. (1963), “Light in the sea”, J. Opt. Soc. Am.53, pp. 214-233.
19. Emery, W.J., Thomson, R.E.(1997), Data analysis methods in physical oceanography, Pergamon Press, Oxford.
20. Farge, M.(1992), “Wavelet transform and their applications to turbulence”, Annual Review of Fluid Mech-anics 24, pp. 395–457.
21. Gerlach F.(2000), “Characteristics of space imaging’s one-meter resolution satellite imagery products”, Int. Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B1.Amsterdam 2000. pp. 128-135
22. Gordon, H. R., and O. B. Brawn(1974), “Influence of bottom depth and albedo on the diffuse reflectance of a flat homogeneous ocean”, Appl. Opt. 13, pp. 2153-2159.
23. Henriksen, Soren W. American Society of Photogrammetry. 4th ed. (1980) Manual of Photogrammetry .Ch2 , pp. 37-101.
24. Hofmann, O., P. Nave and H. Ebner (1982), “DPS – A Digital Photogrammetric System for Producing Digital Elevation Models and Orthophotos by Means of Linear Array Scanner Imagery”, Int. Arch. of Photogrammetry and Remote Sensing, Vol.24, Part B3, pp. 216-227.
25. Japan Space Imaging Corporation (2001), “IKONOS衛星画像データ利用のご紹介-解像度1m の新しい世界-”, http://www.stnet.co.jp/ikonos/pdf/ikonos-hp.pdf
26. Jerlov, N. G.(1976), Optical Oceanography, Elsevier, New York.
27. Kent Clark R., Temple H. Fay, and Charles L. Walker(1987), “Bathymetry calculations with Landsat 4 TM imagery under a generalized ratio assumption”, Appl. Opt., Vol 26, No.19, pp. 4036-4038.
28. Konency, G., Kurck, E.,Lomann, P. and Engel, H(1987), “Evaluation of SPOT imagery on analytical photorammetric instruments”, Photogrammetric Engineering and Remote Sensing, Vol.53, No.9, pp. 12223-1230.
29. Kwong, M.K. and Tang, P.T.P.(1994), “W-Matrices, non-orthogonal multiresolution analysis, and finite signals of arbitrary length”, pp. 1-23, ftp://info.mcs.anl.gov/pub/W-transform/wtransf1.ps.Z.
30. Li, R. (1998), “Potential of high-resolution satellite imagery for national mapping products”, PE&RS, Vol.64, No.12, pp. 1165-1170.
31. Li, R., and G. Zhou (1999), “Experimental study on ground point determination from high resolution airborne and satellite imagery”, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, OH.
32. Li, R., G. Zhou, A. Gonzales, J. K. Liu, F. Ma and Y. Felus (1998), “Coastline mapping and change detection using one-meter resolution satellite imagery”, Project report, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, OH.
33. Liu, P.C.(1995), “Wavelet spectrum analysis and ocean wind waves”, In: Foufoula, G., Kumar, P. (Eds.), Wavelets in Geophysics, Academic Press, pp. 151–166.
34. Lyzenga, D. R.(1979), “Shallow-water reflectance modelling with applications to remote sensing of the ocean floor,” in Proceedings, Thirteenth International Symposium on Remote Sensing of the Environment, Environmental Research Institute of Michigan, Ann Arbor.
35. Lyzenga, D. R. (1978), “Passive remote sensing techniques for mapping water depth and bottom features”, Appl. Opt. 17 (3), pp. 379-383
36. Lyzenga, D. R. (1981), “Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data”, Int. J. Remote Sensing 2, pp. 71-82.
37. Lyzenga, D. R. and F. Thompson(1978), Basic Remote Sensing Investigation for Beach Reconnaissance, Final report, ONR Contract N0014-74-C-0273, ERIM Report 108900-1 l-V .
38. Lyzenga, D. R. (1985), "Shallow-Water Bathymetry Using Combined Lidar and Passive Multispectral Scanner Data", Int. J. Remote Sensing 6,115.
39. Maritorena, S., Morel, A., and Gentili, B. (1994), “Diffuse reflectance of oceanic shallow-waters: Influence of water depth and bottom albedo”, Limnol. Oceanogr. 39(7), pp. 1689–1703.
40. Massel, S. R. (2001), “Wavelet analysis for processing of ocean surface wave records”, Ocean Engineering 28 , pp. 957–987.
41. Massel, S.R.(1996), Ocean surface waves: Their physics and prediction, World Scientific Publications, Singapore, New York.
42. Meyer, Y., Jaffard, S., Rioul, O.(1987), L’analyse par ondelettes. Pou la Science, Sept., pp. 28–37.
43. Meyers, S.D., Kelly, B.G., O’Brien, J.J.(1993), “An introduction to wavelet analysis in oceanography and meteorology with application to the dispersion of Yanai waves”, Monthly Weather Review 121, pp. 2858–2866.
44. Mori, N., Yasuda, T.(1994), “Orthonormal wavelet analysis for deep-water breaking waves”, Proc. 24th Conf. On Coastal Eng., ASCE, Kobe, Japan 1, pp. 412–426.
45. Nieke J., H. Schwartzer, A. Neumann, G. Zimmermann(1997), “Imaging spaceborne and airborne sensor systems in the beginning of the next century”, The European Symposium on Aerospace Remote Sensing (IEE), pp. 22-26 Sept. 1997, London UK.
46. Paredes, J. M. and R.E. Spero (1983), “Water depth mapping from passive remote sensing data under a generalized ratio assumption”, Applied Optics, Vol. 22, pp. 1134-1135.
47. Philpot, W. D. (1989), “Bathymetric mapping with passive multispectral imagery”, Appl. Opt. 28(8), pp. 1569–1578.
48. Philpo, W. D. (1987), “Radiative transfer in stratified waters: A single-scattering approximation for irradiance”, Appl. Opt. 26, pp. 4123-4132.
49. Plass, G. N., and G. W. Kattawar.(1972), “Monte Carlo calculations of radiative transfer in the Earth’s atmosphere-ocean system: 1. Flux in the atmosphere and ocean”, J. Phys. Oceanogr. 2, pp. 139-145.
50. Polcyn, F. C. and D. R. Lyzenga(1973), "Calculations of water depth from ERTS-MSS data”, in Proceedings, Symposium on Significant Results from ERTS-1, NASA Spec. Publ. SP-327 (1973).
51. Polcyn,F. C., W. L. Brown, and I. J. Sattinger(1970), "The measurement of water depth by remote sensing techniques", Report 8973-26-F, Willow Run Laboratories, The University of Michigan, Ann Arbor.
52. Polikar, R.(1996), “The wavelet tutorial”, Part I ~ PartIV, pp. 1-60, http://www2.iastate.edu/~rpolikar/WAVELETS/.
53. Seige, P., P. Reinartz and M. Schroeder (1998), “The MOMS-2P mission on the MIR station”, Int. Archives of Photogrammetry and Remote Sensing, Vol.32, Part 1, Bangalore, India.
54. Shen, Z., Mei, L.(1994), “Fine structure of wind wave analyzed with wavelet-transform”, Journal of Physical Oceanography 24, pp. 1085–1094.
55. Spitzer, D., and Dirks, R. W. J. (1987), “Bottom influence on the reflectance of the sea”, Int. J. Remote Sens. 8(3), pp. 279–290.
56. T. Thierry ,and C. Philip (2000), “Demystification of IKONOS”, Earth Observation Magazine, pp. 17-21.
57. Tuteur, F.B.(1989), “Wavelet transformations in signal detection”, In: Combes, J.M., Grossman, A., Ycham-itchian, P. (Eds.), Wavelets. The Time-Frequency Methods and Phase Space. Springer-Verlag, Berlin, Heidelberg, pp. 132–138.
58. Van Name, F.W.(1960), Modern Physics. Prentice-Hall, Inc, Englewood Cliffs.
59. Weidmark, W. C., S. C. Jain, H. H. Zwick, and J. R. Miller(1981), "Passive Bathymetric Measurements in the Bruce Peninsula Region of Ontario” , in Proceedings, Fifteenth International Symposium on Remote Sensing of the Environment, Environmental Research Institute of Michigan, Ann Arbor.
60. Wezernak, C. T. and D. R. Lyzenga(1953), Remote Sensing of Environ, 4, 37.
61. Young, R.K.(1993), Wavelet Theory and Its Applications, Kluwer Academic Publishers, pp. 1-38.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code