Responsive image
博碩士論文 etd-0809106-124752 詳細資訊
Title page for etd-0809106-124752
論文名稱
Title
幽門螺旋桿菌感染對SUMO在細胞中分佈的影響
The alternative subcellular localization of SUMOs in response to H. pylori infection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-11
繳交日期
Date of Submission
2006-08-09
關鍵字
Keywords
細胞凋亡、幽門螺旋桿菌
SUMO, apoptosis, H. pylori
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
目前在人體中發現有四種SUMO的存在,分別為SUMO-1, -2, -3和-4。其中大多數的SUMO-1/2是位於細胞核中,但SUMO-1與SUMO-2蛋白的同質性只有44%。已知可被SUMO-1修飾的目標蛋白已超過50幾種,包含了轉錄因子與共同轉錄因子、調控因子、核體蛋白、核孔複合蛋白、DNA修復相關的蛋白與一些病毒蛋白。然而對於SUMO-2修飾的目標蛋白目前所知的不多,可能與環境壓力有關。藉由酵母菌二次雜交的方法中發現,SUMO-1可與Fas/APO-1和TNF受體連結,但此是否對於生物性壓力所造成的細胞凋亡有關尚未清楚。幽門螺旋桿菌為一已知的胃癌致病因子,所以我們利用幽門螺旋桿菌可引起細胞的凋亡,作為一種生物性的壓力,觀察SUMO-1/2在細胞受到感染下對於細胞凋亡的影響。當過度表現SUMO-1/2在細胞中,12小時後並不會影響細胞的凋亡;但若受幽門螺旋桿菌感染後,SUMO-1/2則會加強細胞凋亡的產生。此外,當細胞過度表現SUMO-1/2在48小時後會增加細胞的凋亡產生,然而受幽門螺旋桿菌感染的細胞群中,只有SUMO-2會明顯的增加細胞的凋亡。所以在受到幽門螺旋桿菌感染的細胞中,SUMO-2相較於SUMO-1更能增強細胞凋亡的產生。不活化的SUMO-1/2,即SUMO-1/2失去相撲化(sumoylation)能力則使細胞凋亡影響減弱,顯示SUMO的相撲化與細胞的凋亡有關。另外,藉由幽門螺旋桿菌感染2小時會使SUMO-2出現在細胞質的細胞比例上升22%,而SUMO-1則為11%。Leptomycin B可抑制SUMO-1的出核,但對於SUMO-2則無影響。Leptomycin B也抑制了SUMO-1在受感染的細胞中所增加的細胞凋亡,但依然無法抑制SUMO-2。因此,本研究認為SUMO-1/2在細胞受到幽門螺旋桿菌感染短時間中會由細胞核移至細胞質中而加強細胞凋亡的產生。其中SUMO-1的出核受到出核因子的調控,而SUMO-2則否。
Abstract
Four small ubiquitin-like modifier (SUMO) isoforms termed SUMO-1, -2, -3 and -4 have been identified in human. Most SUMO-1/2 proteins are localized in nucleus, whereas SUMO-1 protein exhibits 44% homolog with SUMO-2 protein. Over 50 proteins have been identified as the target proteins for SUMO-1 modification and these include transcription factors, their cofactors, regulators, nuclear body proteins, nuclear pore complex proteins, DNA repair proteins, and viral proteins. However, only a handful of SUMO-2 targets are known and SUMO-2 modification may response to environmental stress. SUMO-1 may interact with Fas/APO-1 and TNF receptor 1 on yeast two hybrid interactions; however, it is not clear whether SUMO would enhance apoptosis or response to biological stress. Helicobacter pylori (H. pylori) defined as a gastric carcinogen is definite a biological stress to the cells. It causes gastric epithelial cell damage by apoptosis. In this study whether the SUMO-1/2 pathway constitutes an element of the cellular response to the H. pylori infection was examined. Overexpression of SUMO-1/2 for 12 hours had no effects on the apoptotic activities of cells; however it enhanced apoptosis during H. pylori infection. Overexpression of SUMO-1/2 for 48 hours increased the apoptosis of cells; however only SUMO-2 enhanced apoptosis significantly during H. pylori infection. The enhancements are more powerful for SUMO-2 than that of SUMO-1. Inactive SUMO, a cytoplasm dispersed sumoylation-incompetent mutant, eliminates such activities, suggesting that sumoylation or SUMO interactions are involved in the apoptotic enhancement. The percentages of cells with cytoplasmic SUMO-2 were increased 22% by H. pylori infection for 2 hours and SUMO-1 were increased 11%. The translocalization of SUMO-1 was blocked by leptomycin B; however, it did not work on SUMO-2. Leptomycin B could also inhibit SUMO-1 enhanced apoptosis during H. pylori infection, whereas it had no effects on SUMO-2. It is concluded that SUMO-1/2 pathway constitutes an element of the cellular response to H. pylori infection by enhancing apoptosis through shuttling from nucleus to cytoplasm. SUMO-1 is via a CRM1-dependent pathway while SUMO-2 is via a CRM1-independent pathway.
目次 Table of Contents
中文摘要……………………………………………………………… I
英文摘要……………………………………………………………… II
縮寫表………………………………………………………………… III
壹、緒論……………………………………………………………… 1
1. 幽門螺旋桿菌 (Helicobacter pylori)………………………….. 1
1-1. 尿素酶(Urease)之作用…………………………………….. 2
1-2. Cag Pathogenicity Island (cag PAI)之毒性………………… 4
1-3. Vacuolating Cytotoxin A (VagA)之毒性………………......... 6
1-4. 幽門螺旋桿菌與細胞凋亡的關係……………………….... 9
2. SUMO…………………………………………………………… 10
2-1. SUMO-1與泛激素(Ubiquitin).……………………………. 10
2-2. 相撲化(Sumoylation)……………………………………… 12
2-3. SUMO的同質體(Isoform)………………………................ 14
2-4. SUMO-1在細胞中的位置…………………………………. 15
2-5. SUMO-1在細胞中的功能………………………………….. 16
2-5-1. 調控蛋白質在細胞中的位置………………………... 16
2-5-2. 轉錄的因子的調控…………………………………. 17
2-5-3. 穩定蛋白質的作用………………………………….. 19
2-5-4. 核體的組成………………………………………….. 20
2-6. SUMO-1與細胞凋亡的關係………………………………. 21
2-7. SUMO-2/3在細胞中的位置……………………………….. 22
2-8. SUMO-2/3在細胞中的功能………………………………... 22
3. 實驗室之前的研究…………………………………………….. 23
貳、 研究目的………………………………………………………… 25
參、 實驗材料及方法………………………………………………… 26
1. 細胞培養………………………………………………………… 26
1-1. 細胞株……………………………………………………… 26
1-2. 細胞培養液的配置………………………………………… 26
1-3. 繼代培養…………………………………………………… 28
1-4. 冷凍保存…………………………………………………… 29
1-5. 解凍………………………………………………………… 30
2. 轉植 (Transfection)…………………………………………….. 30
2-1. 轉植質體 (plasmids)……………………………………… 30
2-2. 細胞計數…………………………………………………… 31
2-3. 細胞種植 (seeding)………………………………………... 31
2-4. 細胞轉植…………………………………………………… 32
2-4-1. Superfect轉植質體…………………………………….. 32
2-4-2. Lipofectamine 2000轉植質體…………………………. 33
3. 感染 (Infection)…………………………………………………. 34
3-1. 細菌………………………………………………………… 34
3-2. 細菌培養…………………………………………………… 34
3-3. 菌量計數…………………………………………………… 35
3-3-1. 比色管計數…………………………………………… 35
3-3-2. OD600吸光值計數…………………………………….. 35
3-4. 細胞感染…………………………………………………… 36
4. 螢光顯微鏡分析 (Fluorescence microscope analysis)………… 36
4-1. Annexin-V 染色…………………………………………… 36
4-2. DAPI染色………………………………………………….. 37
5. 流式細胞技術(Flow Cytometry)……………………………….. 39
5-1. Annexin-V assay……………………………………………. 39
5-2. Flow Check…………………………………………………. 40
5-3. Sample anaylsis…………………………………………….. 41
5-4. Close………………………………………………………… 42
肆、結果……………………………………………………………….. 43
1. SUMO-1/2的表現對幽門螺旋桿菌所引起細胞凋亡的影響…. 43
2. 不活化的SUMO-1/2對幽門螺旋桿菌所引起細胞凋亡的影響 46
3. SUMO-1/2在受到幽門螺旋桿菌感染後的細胞中位置的變化.. 48
3-1. SUMO-1/2在受到幽門螺旋桿菌感染不同時間後對於在細胞中位置的改變………………………………………...
51
3-2. SUMO-1/2在受到不同濃度幽門螺旋桿菌感染後對於在細胞中位置的改變………………………………………...
53
4. Leptomycin B對於細胞中SUMO-1/2出核的影響……………. 55
5. SUMO-1/2在細胞中位置的改變對細胞凋亡的影響…………. 57
伍、 討論………………………………………………………………. 61
1. SUMO與細胞凋亡的關係………………………………………. 61
2. SUMO是藉由相撲化(Sumoylation)影響細胞的凋亡………….. 62
3. 幽門螺旋桿菌會引起AGS細胞凋亡的產生…………………... 63
4. 幽門螺旋桿菌感染後SUMO-1/2對細胞凋亡的影響…………. 63
5. 幽門螺旋桿菌感染對SUMO-1/2在細胞中分佈的影響……… 65
6. SUMO-1/2在細胞中的分布對細胞凋亡的影響……………….. 68
7. 總結……………………………………………………………… 70
8. 未來工作………………………………………………………… 71
陸、參考文獻…………………………………………………………… 72
柒、附錄………………………………………………………………… 77
附錄一 SUMO所引起細胞凋亡比例的原始資料……………….. 77
附錄二 SUMO在細胞中分佈的差異與凋亡比例影響的原始資料…………………………………………………………..
83
附錄三 pDsRed1-C1轉植載體…………………………………… 91
附錄四 SUMO-1/2的胺基酸序列………………………………… 92
參考文獻 References
1. Basso, D., F. Navaglia, L. Brigato, M.G. Piva, A. Toma, E. Greco, F. Di Mario, F. Galeotti, G. Roveroni, A. Corsini, and M. Plebani. 1998. Analysis of Helicobacter pylori vacA and cagA genotypes and serum antibody profile in benign and malignant gastroduodenal diseases. Gut. 43:182-6.
2. Basso, D., and M. Plebani. 2004. H. pylori infection: bacterial virulence factors and cytokine gene polymorphisms as determinants of infection outcome. Crit Rev Clin Lab Sci. 41:313-37.
3. Bayer, P., A. Arndt, S. Metzger, R. Mahajan, F. Melchior, R. Jaenicke, and J. Becker. 1998. Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol. 280:275-86.
4. Bohren, K.M., V. Nadkarni, J.H. Song, K.H. Gabbay, and D. Owerbach. 2004. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem. 279:27233-8.
5. Borden, K.L. 2002. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol. 22:5259-69.
6. Buschmann, T., S.Y. Fuchs, C.G. Lee, Z.Q. Pan, and Z. Ronai. 2000. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell. 101:753-62.
7. Bylebyl, G.R., I. Belichenko, and E.S. Johnson. 2003. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem. 278:44113-20.
8. Chen, A., P.Y. Wang, Y.C. Yang, Y.H. Huang, J.J. Yeh, Y.H. Chou, J.T. Cheng, Y.R. Hong, and S.S. Li. 2006. SUMO regulates the cytoplasmonuclear transport of its target protein Daxx. J Cell Biochem. 98:895-911.
9. David, G., M.A. Neptune, and R.A. DePinho. 2002. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem. 277:23658-63.
10. de The, H., C. Chomienne, M. Lanotte, L. Degos, and A. Dejean. 1990. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 347:558-61.
11. Desterro, J.M., M.S. Rodriguez, and R.T. Hay. 1998. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 2:233-9.
12. Dohmen, R.J. 2004. SUMO protein modification. Biochim Biophys Acta. 1695:113-31.
13. Domek, M.J., P. Netzer, B. Prins, T. Nguyen, D. Liang, F.A. Wyle, and A. Warner. 2001. Helicobacter pylori induces apoptosis in human epithelial gastric cells by stress activated protein kinase pathway. Helicobacter. 6:110-5.
14. Dunn, B.E., H. Cohen, and M.J. Blaser. 1997. Helicobacter pylori. Clin Microbiol Rev. 10:720-41.
15. Galmiche, A., J. Rassow, A. Doye, S. Cagnol, J.C. Chambard, S. Contamin, V. de Thillot, I. Just, V. Ricci, E. Solcia, E. Van Obberghen, and P. Boquet. 2000. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. Embo J. 19:6361-70.
16. Gill, G. 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18:2046-59.
17. Gostissa, M., A. Hengstermann, V. Fogal, P. Sandy, S.E. Schwarz, M. Scheffner, and G. Del Sal. 1999. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. Embo J. 18:6462-71.
18. Guo, D., J. Han, B.L. Adam, N.H. Colburn, M.H. Wang, Z. Dong, D.L. Eizirik, J.X. She, and C.Y. Wang. 2005. Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochem Biophys Res Commun. 337:1308-18.
19. Higashi, H., R. Tsutsumi, S. Muto, T. Sugiyama, T. Azuma, M. Asaka, and M. Hatakeyama. 2002. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 295:683-6.
20. Hilgarth, R.S., L.A. Murphy, H.S. Skaggs, D.C. Wilkerson, H. Xing, and K.D. Sarge. 2004. Regulation and function of SUMO modification. J Biol Chem. 279:53899-902.
21. Hirayama, F., S. Takagi, H. Kusuhara, E. Iwao, Y. Yokoyama, and Y. Ikeda. 1996. Induction of gastric ulcer and intestinal metaplasia in mongolian gerbils infected with Helicobacter pylori. J Gastroenterol. 31:755-7.
22. Hofmann, T.G., and H. Will. 2003. Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ. 10:1290-9.
23. Hong, Y., R. Rogers, M.J. Matunis, C.N. Mayhew, M.L. Goodson, O.K. Park-Sarge, and K.D. Sarge. 2001. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem. 276:40263-7.
24. Jones, N.L., A.S. Day, H.A. Jennings, and P.M. Sherman. 1999. Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infect Immun. 67:4237-42.
25. Keates, S., A.C. Keates, M. Warny, R.M. Peek, Jr., P.G. Murray, and C.P. Kelly. 1999. Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag+ and cag- Helicobacter pylori. J Immunol. 163:5552-9.
26. Kurepa, J., J.M. Walker, J. Smalle, M.M. Gosink, S.J. Davis, T.L. Durham, D.Y. Sung, and R.D. Vierstra. 2003. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem. 278:6862-72.
27. Lee, Y.S., M.S. Jang, J.S. Lee, E.J. Choi, and E. Kim. 2005. SUMO-1 represses apoptosis signal-regulating kinase 1 activation through physical interaction and not through covalent modification. EMBO Rep. 6:949-55.
28. Li, H., C. Leo, J. Zhu, X. Wu, J. O'Neil, E.J. Park, and J.D. Chen. 2000. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol. 20:1784-96.
29. Lin, X., M. Liang, Y.Y. Liang, F.C. Brunicardi, and X.H. Feng. 2003. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem. 278:31043-8.
30. Liou, M.L., and H.C. Liou. 1999. The ubiquitin-homology protein, DAP-1, associates with tumor necrosis factor receptor (p60) death domain and induces apoptosis. J Biol Chem. 274:10145-53.
31. Lois, L.M., C.D. Lima, and N.H. Chua. 2003. Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell. 15:1347-59.
32. Manza, L.L., S.G. Codreanu, S.L. Stamer, D.L. Smith, K.S. Wells, R.L. Roberts, and D.C. Liebler. 2004. Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol. 17:1706-15.
33. Marais, A., G.L. Mendz, S.L. Hazell, and F. Megraud. 1999. Metabolism and genetics of Helicobacter pylori: the genome era. Microbiol Mol Biol Rev. 63:642-74.
34. Matunis, M.J., E. Coutavas, and G. Blobel. 1996. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 135:1457-70.
35. Matunis, M.J., J. Wu, and G. Blobel. 1998. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol. 140:499-509.
36. Montecucco, C., and M. de Bernard. 2003. Molecular and cellular mechanisms of action of the vacuolating cytotoxin (VacA) and neutrophil-activating protein (HP-NAP) virulence factors of Helicobacter pylori. Microbes Infect. 5:715-21.
37. Montecucco, C., and R. Rappuoli. 2001. Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol. 2:457-66.
38. Moss, S.F., E.M. Sordillo, A.M. Abdalla, V. Makarov, Z. Hanzely, G.I. Perez-Perez, M.J. Blaser, and P.R. Holt. 2001. Increased gastric epithelial cell apoptosis associated with colonization with cagA + Helicobacter pylori strains. Cancer Res. 61:1406-11.
39. Muller, S., C. Hoege, G. Pyrowolakis, and S. Jentsch. 2001. SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol. 2:202-10.
40. Navaglia, F., D. Basso, M.G. Piva, L. Brigato, A. Stefani, N. Dal Bo, F. Di Mario, M. Rugge, and M. Plebani. 1998. Helicobacter pylori cytotoxic genotype is associated with peptic ulcer and influences serology. Am J Gastroenterol. 93:227-30.
41. Nefkens, I., D.G. Negorev, A.M. Ishov, J.S. Michaelson, E.T. Yeh, R.M. Tanguay, W.E. Muller, and G.G. Maul. 2003. Heat shock and Cd2+ exposure regulate PML and Daxx release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 and 25 differently. J Cell Sci. 116:513-24.
42. Okura, T., L. Gong, T. Kamitani, T. Wada, I. Okura, C.F. Wei, H.M. Chang, and E.T. Yeh. 1996. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol. 157:4277-81.
43. Olivares, D., J.P. Gisbert, and J.M. Pajares. 2005. Helicobacter pylori infection and gastric mucosal epithelial cell apoptosis. Rev Esp Enferm Dig. 97:505-20.
44. Papini, E., M. Zoratti, and T.L. Cover. 2001. In search of the Helicobacter pylori VacA mechanism of action. Toxicon. 39:1757-67.
45. Parsonnet, J., G.D. Friedman, D.P. Vandersteen, Y. Chang, J.H. Vogelman, N. Orentreich, and R.K. Sibley. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 325:1127-31.
46. Peek, R.M., Jr., S.F. Moss, K.T. Tham, G.I. Perez-Perez, S. Wang, G.G. Miller, J.C. Atherton, P.R. Holt, and M.J. Blaser. 1997. Helicobacter pylori cagA+ strains and dissociation of gastric epithelial cell proliferation from apoptosis. J Natl Cancer Inst. 89:863-8.
47. Rudi, J., D. Kuck, S. Strand, A. von Herbay, S.M. Mariani, P.H. Krammer, P.R. Galle, and W. Stremmel. 1998. Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J Clin Invest. 102:1506-14.
48. Saitoh, H., and J. Hinchey. 2000. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 275:6252-8.
49. Seeler, J.S., and A. Dejean. 2003. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol. 4:690-9.
50. Sobko, A., H. Ma, and R.A. Firtel. 2002. Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Dev Cell. 2:745-56.
51. Song, J.J., and Y.J. Lee. 2004. Tryptophan 621 and serine 667 residues of Daxx regulate its nuclear export during glucose deprivation. J Biol Chem. 279:30573-8.
52. Su, H.L., and S.S. Li. 2002. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene. 296:65-73.
53. Watanabe, T., M. Tada, H. Nagai, S. Sasaki, and M. Nakao. 1998. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology. 115:642-8.
54. Wood, L.D., B.J. Irvin, G. Nucifora, K.S. Luce, and S.W. Hiebert. 2003. Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci U S A. 100:3257-62.
55. Zhong, S., S. Muller, S. Ronchetti, P.S. Freemont, A. Dejean, and P.P. Pandolfi. 2000. Role of SUMO-1-modified PML in nuclear body formation. Blood. 95:2748-52.
56. Zhou, W., J.J. Ryan, and H. Zhou. 2004. Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem. 279:32262-8.
57. Zhu, J., V. Lallemand-Breitenbach, and H. de The. 2001. Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene. 20:7257-65.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.137.164
論文開放下載的時間是 校外不公開

Your IP address is 18.220.137.164
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code