Responsive image
博碩士論文 etd-0809107-192405 詳細資訊
Title page for etd-0809107-192405
論文名稱
Title
在可調變格點下使用內插尺度函數的第一原理計算
First Principle Calculation with Interpolating Scaling Function on Adaptive Gridding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-26
繳交日期
Date of Submission
2007-08-09
關鍵字
Keywords
帕松微分方程、內插尺度函數、第一原理計算
interpolating scaling function, poisson equation, first principle calculation
統計
Statistics
本論文已被瀏覽 5667 次,被下載 1730
The thesis/dissertation has been browsed 5667 times, has been downloaded 1730 times.
中文摘要
一個在可變調格點下使用內插尺度函數的多重解析度新方法,可用於第一原理計算。我們也以二次微分的內插尺度函數解帕松微分方程,也得到了很好的計算結果。此法比碎波簡單,而且完全實現快速碎波轉換,所以也適合頻繁更新之電荷系統,像是原子、分子及固態電子結構的第一原理計算。雖然這方法可簡單的實現在實空間的可變調變格點法,格點數卻比起直接使用實空間少很多。這個簡單而有效的方法,提供了在實空間與碎波之外的選擇。另外,此法將不同解析度的空間分開處理,所以容易被平行化。
Abstract
A new multiresolution scheme based on interpolating scaling function(ISF) on adaptive gridding(AG) shows promising in the first principle calculation. We also use ISFs on solving Poisson equation(PE), and find good approximations on the expansions of the second derivatives of ISFs. It is simpler than the wavelet scheme and fully implements the fast wavelet transformation so that the method is very suitable to problems with frequently updating charge density such as the first-principle calculation in electronic structures in atoms, molecules, and solids.
Although the scheme is similar to the AG scheme on real space, the ISFs can represent fields more effectively and it needs less grids than the scheme of real space does. This simple and effective method provides an alternative to both the real space and the wavelet methods in the first principle calculation. Also, The method can be easily parallelized due to the block structure of the grid layout.
目次 Table of Contents
第一章 前言..............................................................1

第二章 柯恩-沈方程..............................................6
2-1:柯恩-沈方程....................................................6
2-2:平面波...........................................................12
2-2-1:糕模勢.......................................................14
2-2-2:線性綴加平面波法...................................15
2-2-3:線性原子球軌道法...................................17
2-3:碎波......................................................... .....18
2-3-1:多重解析度...............................................28
2-3-2:基底函數選擇...........................................21
2-3-3:場值轉換...................................................22

第三章 內插尺度函數與第一原理計算................26
3-1: 特色..............................................................26
3-2: 製造內插尺度函數......................................31
3-2-1: 原始函數..................................................31
3-2-2: 一次微分函數.................. ........................41
3-2-3: 二次微分函數...........................................41
3-3: 多重解析度...................................................43
3-4: 第一原理計算...............................................47
3-4-1: 基底函數安排..................... ......................51
3-4-2:計算能量.....................................................54
3-4-3:求波函數解.................................................55
第四章 帕松微分方程.............................................63
4-1: 理論...............................................................63
4-1-1: 解庫倫位勢................................................63
4-1-2: 以內插尺度函數求位勢............................68
4-2: 二次微分圖形................................................69
4-2-1: 平滑化再微分............................................69
4-2-2:解方程式取二次微分展開值.....................73
4-2-3: 多重解析度解位勢....................................75
4-3: 實例................................................................78

第五章 成果與討論..................................................85
5-1: 系統安排及初始條件....................................85
5-2: 結果................................................................87
5-3: 結論................................................................90

參考文獻...................................................................93
參考文獻 References
1. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).
2. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).
3. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).
4. A. Hrennikoff, ASME J. Appl. Mech. 8 (1941), 619.
5. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984); E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).
6. R. A. Lippert, T.A. Arias, and A. Edelman, J. Comput. Phys., 140, 278, (1998).
7. D. J. Singh, D. J.,“Planewaves, Pseudopotentials and the Lapw Method", Kluwer Academic Publisher (1994).
8. O. K. Anderson, Phys. Rev. B, 12, 3060 (1975).
9. W. Sweldens and peter Schroder, ACM SIGGRAPH Course Notes, (1996).
10. M. R. Hestenes and E. Eduard, "Methods of Conjugate Gradients for Solving Linear Systems", Journal of Research of the National Bureau of Standards, 49 (1952).
11. D. R. Hartree, Proc. Cambridge Philos. Soc. 24, 89 (1928).
12. E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938)
13. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984)
14. I. Daubechies, Comm. Pure Appl. Math. 41, 909-996 (1988).
15. A. Haar, Math. Anna. 69, 331 (1910).
16. P. Goupillaud, A. Grossman, and J. Morlet. Cycle-Octave and Related Transforms in Seismic Signal Analysis. Geoexploration, 23, 85 (1984)
17. M. J. Burger and J.Oliger, J. comput. Phys. 53, 484 (1984).
18. G. Fernandez, S. Periaswamy, and W. Sweldens, http://www.cs.dartmouth.edu/~sp/liftpack/
19. C.J. Tymczak and Xiao-Qian Wang, Phys. Rev. Lett., 78, 3654, (1997).
20. Siqing Wei and M.Y. Chou, Phys. Rev. Lett., 76, 2650, (1996).
21. T.A. Arias, Rev. Mod. Phys., 71, 267, (1999).
22. W. Sweldens and peter Schroder, ACM SIGGRAPH Course Notes, (1996).
23. Ingrid Daubechies, Ten Lectures on Wavelets", SIAM, (1992).
24. T.P. Perdew and A. Zunger, Phys. Rev. B., 23, 5048, (1981).
25. T.A. Arias and T.D. Engeness, in Computer Simulation Studies in Condensed Matter Physics XII, edited by D.F. Landau, S.P. Lewis, and H.B. Schuttler, Springer Proceedings in Physics Vol. 85, Springer-Verlag, Berlin, (2000).
26. U.V. Waghmare, H. Kim, I.J. Park, N. Modine, P. Maragakis, E. Kaxiras, Comp. Phys. Comm. 137, 341 (2001).
27. W.L. Briggs, V.E. Henson, and S.F. McCormick, "A Multigrid Tutorial, 2. nd. Edition", SIAM, (2000).
28. D.F. Martin and K.L. Cartwright, Tech. Rept. No. UCB/ERL M96/66, (1996).
29. G. Beylkin and Keiser, J. comput. Phys. 132, 233 (1997).
30. O.V. Vasilyev and S. Paolucci, J. comput. Phys. 125, 16 (1997).
31. O.V. Vasilyev and C. Bowman, J. comput. Phys. 165, 660 (1997).
32. O.V. Vasilyev and N. K.-R. Kevlahan, J. comput. Phys. 206, 412 (2005).
33. G. Deslaurier and S. Dubuc, Constr. Approx., 5, 49 (1989).
34. M. Heiskanen, T. Torsti, M.J. Puska, and R.M. Nieminen, Phys. Rev. B 63, 245106, (2001).
35. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys., 64, 1045, (1992).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code