Responsive image
博碩士論文 etd-0809110-132126 詳細資訊
Title page for etd-0809110-132126
論文名稱
Title
三種生醫應用濾波器之設計與研究
Study and design of three integrated filters for biomedical applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-15
繳交日期
Date of Submission
2010-08-09
關鍵字
Keywords
濾波器
filter
統計
Statistics
本論文已被瀏覽 5741 次,被下載 0
The thesis/dissertation has been browsed 5741 times, has been downloaded 0 times.
中文摘要
本論文是有關於三種應用於生醫積體電路之濾波器研讀與設計,其中包含一個二階中低頻高通濾波器(設計一),一個二階高頻低通濾波器(設計二)以及一個一階低頻高通濾波器(設計三)。設計一與設計二主要用於晶片安全監測系統,主要功能為分離生理訊號與高頻測試訊號。設計三應用於心電圖適應性取樣系統,本論文不包含其詳細的應用部分。設計一主要由轉導放大器與電容所組成,濾波器是採用文獻中一全差動二階高通濾波器,並使用傳統折疊轉導放大器去實現此全差動二階高通濾波器,藉由適當設計轉導放大器之電晶體外觀比以達成我們的生醫系統所需之濾波器規格。其post-layout模擬所得截止頻率為316 kHz,在輸入信號頻率1 MHz、峰峰值為2 V的總諧波失真為-40.14 dB。
設計二也是由轉導放大器與電容所組成,為了克服轉導放大器線性度導致訊號失真的問題,本論文採用對稱與非對稱差動對設計一線性化轉導放大器,並使用具共模回授的傳統閘級電壓控制之負電阻使轉導放大器具高輸出阻抗,此共模回授電路穩定輸出的偏壓點。使用此線性轉導放大器去實現一個全差動二階低通濾波器,藉由適當設計此轉導放大器之電晶體外觀比以達成我們的生醫系統所需之濾波器規格。濾波器post-layout模擬所得截止頻率為12.93 MHz,在輸入信號頻率10 MHz、峰峰值為1 V時的總諧波失真為-47.14 dB,從0~13 MHz積分雜訊為184μVrms。
設計三使用基底-汲極連接組態之電晶體偏壓成一高電阻值之主動電阻,並將其應用於一階電阻電容濾波器設計。其截止頻率為647 Hz,面積消耗約 0.012 mm2。
測試晶片採用TSMC 0.35 μm CMOS製程製作,本論文包含設計一與設計三之測試結果,測試結果證實此二濾波器之操作。
Abstract
This thesis is concerned with the study and design of three integrated filters for biomedical applications. The following designs are considered: A 2nd-order high-pass filter with low cut-off frequency (Design 1), a 2nd-order low-pass filter with high cut-off frequency (Design 2), and a 1st-order high-pass filter with low cut-off frequency (Design 3). Design 1 and 2 are intended for separating the physiological signal and a high-frequency test signal in the application of a chip safety monitoring system. Design 3 finds its application in a system for adaptive sampling of the electrocardiogram. The details of the applications are not part of this thesis.
Design 1 is composed of operational transconductance amplifier (OTA) and capacitances. The thesis adopts an 2nd-order fully-differential HP filter and uses conventional folded-cascode OTAs to realize the fully-differential HP filter. By proper designing the transistor sizes of the OTA, the HP filter can achieve specific specification in
our biomedical system. Its post-layout simulated cut-off frequency is 316 kHz and the total harmonic distortion is -40.14dB with a 1MHz 2 Vp-p input signal.
Design 2 is also composed of OTA and capacitances. To overcome the linearity problem of OTA, so-called symmetrical and asymmetrical differential pairs are utilized to design a more linear transconductor. Moreover, a conventional gate voltage-controlled negative resistor circuit with CMFB circuit is used to create the required high output
impedance of the OTA. The CMFB circuits are used to stabilize the output dc level in the OTA. The OTA is used to realize a fully-differential 2nd-order LP filter. By proper designing the transistor sizes of the OTA, the filter can achieve specific specification in our biomedical system. The filter’s post-layout simulated cut-off frequency is 12.93 MHz and the total harmonic distortion is -47.14 dB with a 10 MHz 1 Vp-p input signal.
Design 3 uses an RC filter design with bulk-drain connected MOS transistors biased as an active high-value resistor. A cut-off frequency of 647 Hz is thus achieved on an active area of 0.012 mm2.
Test chips were fabricated in TSMC 0.35 μm CMOS technology for Designs 1 and 3 and the measured results are reported, confirming the operation of the filters.
目次 Table of Contents
CHAPTER 1
INTRODUCTION 1
1.1 Background.. 1
1.2 Description of this thesis .. 2
CHAPTER 2
EQUIVALENT CIRCUIT AND APPLICATIONS OF OTA. 4
2.1 Operational Transconductor Amplifiers 4
2.1.1. Equivalent circuit of Operational Transconductor Amplifiers .. 4
2.1.2. Comparison between single-end and differential output OTA.. 5
2.2 Simple Applications of OTA .. 6
2.2.1. Resistor implementation using OTAs. 6
2.2.2. Inductor implementation using OTAs 8
2.2.3. Voltage amplifier and adder. 9
2.2.4. Integrator 10
CHAPTER 3
2nd-ORDER HIGH-PASS OTA-C FILTER USING CONVENTIONAL
FOLDED-CASCODE OTA. 12
3.1 Motivation . 12
3.2 Calculation and Analysis of a 2nd-order Fully-differential HP Filter 13
3.3 Parasitic capacitance effect 19
3.4 Fully-differential OTA Structure and Buffer 20
3.4.1. Fully-differential folded-cascode OTA circuit. 21
3.4.2. Buffer 23
3.5 Simulation result. 23
3.6 Circuit Layout.. 28
CHAPTER 4
2nd-ORDER LOW-PASS OTA-C FILTER USING LINEARIZED CMOS OTA.. 29
4.1 Motivation and Background . 29
4.1.1. Linearity Analysis of a Fully-differential Pair. 29
4.1.2. Linearization Techniques 32
4.1.2.1. Source Degeneration . 32
4.1.2.2. Voltage-Controlled Cross-Coupled Cell . 34
4.1.2.3. The symmetrical and asymmetrical cross-coupled transistor pairs
linearization . 35
4.1.2.4. Comparison of techniques .. 37
4.1.3. Second Order Effects 38
4.2 2nd-order Fully-differential LP Filter Using Linear OTA with CMFB Circuit and Gate Voltage-Controlled Negative Resistance Load 38
4.2.1. Gate Voltage-Controlled Negative Resistance Load with CMFB Circuit . 39
4.2.2. Common-Mode Feedback Circuit . 42
4.2.3. The OTA Circuit Architecture and Simulated Results. 43
4.2.4. General 2nd-order Fully-differential LP Filter [1].. 46
4.2.5. Simulation Result .. 47
4.2.6. Circuit Layout.. 52
CHAPTER 5
THE ACTIVE HIGH-VALUE RESISTOR USING TWO BULK-DRAIN
CONNECTED TRANSISTORS 53
5.1 Motivation and Background . 53
5.1.1. Capacitor Scaling 54
5.1.2. Transconductance reduction techniques . 55
5.1.3. MOS resistor biased in linear region 56
5.2 High-value Tunable CMOS Resistor 57
5.3 Simulation Result .. 58
CHAPTER 6
MEASUREMENT RESULTS 60
6.1 Measurement of 2nd-order Fully-differential HP Filter .. 60
6.2 High-value tunable CMOS resistor using bulk-drain connected transistors 62
CHAPTER 7
CONCLUSIONS AND FUTURE WORK.. 64
7.1 Conclusions .. 64
7.2 Future work .. 64
References.. 66
參考文獻 References
[1] R. Schaumann and M. E. Van Valkenburg, Design of Analog Filters, 2nd ed. New York: Oxford University Press, 2010.
[2] S. Pipilos and Y. Tsividis, “Design of active RLC integrated filters with application in the GHz range,” in Proc. ISCAS, 1994, pp. 645–648.
[3] D.A. Neamen, Fundamentals of Electronic circuit analysis and design, McGraw-Hill, 1st Edition, 2001.
[4] Y. Tsividis and M. Banu, “Continuous-time MOSFET-C filters in VLSI,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 15–30, Feb. 1986.
[5] M. Banu and Y. Tsividis, “Fully integrated active RC filters in MOS technology,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 644–651, Dec.1983.
[6] P. Pandey, J. Silva-Martinez, and X. Liu, “A 500 MHz OTA-C 4th order Lowpass Filter with Class AB CMFB in 0.35um CMOS Technology,” in Proc. IEEE Custom Integrated Circuits Conf., 2004, pp. 57–60.
[7] B. Linares-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, and J. L. Huertas, ”10 MHz CMOS OTA-C voltage-controlled quadrature oscillator,” Electron. Lett., vol. 25, pp. 765–766, 1989.
[8] K. L. Su, Analog Filters, Kluwer Academic Publishers, 2nd ed., 2002.
[9] H. Khorramabadi and P. R. Gray, “High-frequency CMOS continuous-time filters,”IEEE J . Solid-State Circuits, vol. SC-19. pp.939-948, Dec. 1984.
[10] R. Rieger, ”A Functional Monitoring System for Electrical Safety of Biochips,” Proc. IEEE BioCAS 2009, Oct. 2009.
[11] R. J. Baker, CMOS circuit design, layout, and simulation, Wiley Interscience Revised 2nd Edition, 2008.
[12] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, international edition, 2001.
[13] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS circuit design, layout, and simulation, IEEE press, 1997.
[14] F. Krummenacher and N. Joehl, “A 4-MHz CMOS continuous-time filter with on-chip automatic tuning,” IEEE J. Solid-State Circuits, vol. 23, pp. 750–758, Jun. 1998.
[15] I. Mehr and D. R. Welland, “A CMOS continuous-time Gm-C filter for PRML read channel applications at 150Mb/s and beyond,” IEEE J. Solid-State Circuits, vol. 32, pp. 499–513, Apr. 1997.
[16] Ko-Chi Kuo and A. Leuciuc, “A linear MOS transconductor using source degeneration and adaptive biasing,” IEEE Trans. Circuits Syst. II, vol. 48, no. 10, pp.937-943, Oct. 2001.
[17] S. Szczepatiski, A. Wyszyhski, and R. Schaumann, “Highly linear voltage-controlled CMOS transconductors,” IEEE Trans. Circuits Syst. I, vo1. 40, no. 4, pp.258-262, April 1993.
[18] C. M. Chang, and Bashir M. Al-Hashimi, “Analytical synthesis of current-mode high-order OTA-C filters”, IEEE Trans. Circuits & Syst.-I, vol. 50, no. 9, pp.1188-1192, Sept. 2003.
[19] C. M. Chang, “Analytical synthesis of low-sensitivity voltage-mode odd-nth-order OTA-C elliptic filter structure with the minimum number of components”, 50th IEEE Int’l Midwest Symposium on Circuits and Systems, Montreal, Quebec, Canada, August 5-8, 2007.
[20] S. Koziel, and S. Szczepanski, “Design of Highly Linear Tunable CMOS OTA for Continuous-Time Filters ,” IEEE Trans. Circuits Syst., vol. 49, no. 2, pp. 110-122, February 2002.
[21] A. Ramachandran, “Nonlinearity and Noise Modeling of Operational Transconductance Amplifiers for Continuous Time Analog Filters”, M. Eng. thesis, Dept. Elect. Eng., TAMU, Texas, U.S.A, 2005.
[22] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGrarv-Hill, Inc., 1990.
[23] S. Szczepanski, “VHF fully-differential linearized CMOS transconductance element and its applications,” Proc. IEEE Int. Symp. Circuits Syst., 1994, vol. 5, pp. 97–100
[24] C. H. J. Mensink, B. Nauta, and H. Wallinga, “A CMOS soft-switched transconductor and its application in gain control and filters”, IEEE J. Solid-State Circuits, vol. 32, no.7, pp.989-998, July 1997.
[25] F. C. Yang, “A High Speed Fifth order Gm-C Filter For Ultra-wideband Wireless Applications,” M. Eng. thesis, Dept. Elect. Eng., NCTU, HsinChu, Taiwan, R.O.C, 2005.
[26] R. Rieger and J. Taylor, “ An adaptive sampling system for sensor nodes in body area network,” IEEE Transactions on Neural Systems and Rehabilitation Engineering., vol.17, no. 2, pp 183-189, 2009.
[27] J. Silva-Martínez and A. Vázquez-González, “Impedance scalers for IC active filters,”Proc. IEEE Int. Symp. Circuits Syst. ISCAS’98. , May 31–June 3 1998, vol. 1, pp.151–154, vol. 1.
[28] K. Shu, E. Sanchez-Sinencio, J. Silva-Martinez, and S. H. K. Embabi, “A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier,” IEEE J. Solid-State Circuits, vol. 38, no. 6, June 2003.
[29] S. Solis-Bustos, J. Silva-Martínez, F. Maloberti, and E. Sánchez-Sinencio, “A 60-dB dynamic range CMOS sixth-order 2.4-Hz low-pass filter for medical applications,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 1391–1398, Dec. 2000.
[30] J. Silva-Martinez and S. Solis-Bustos, “Design considerations for high performance very low frequency filters,” Proc. IEEE ISCAS, 1999,vol. 2, pp. 648–651.
[31] Z. Wang, “Current-controlled Linear MOS Earthed and Floating Resistors and Application,” Proc. Inst. Elect. Eng., vol. 137, pt. G, pp. 479–481, Dec. 1990.
[32] L. Sellami, “Linear Bilateral CMOS Resistor for Neural-type Circuits”, Proc. 40th Midwest Symp. Circuits and Systems, Aug. 1997, pp. 1330–1333.
[33] E. Tajalli, J. Brauer, Y. Leblebici, and E. Vittoz, “Subthreshold Source-Coupled Logic Circuits for Ultra-Low Power Applications,” IEEE J. Solid-State Circuits, vol. 43, no.7, pp. 1699-1710, 2008.
[34] L. Acosta, M. Jimenez, R.G. Carvajal, A.J. Lopez-Martin, and J. Ramirez-Angulo,“Highly Linear Tunable CMOS Gm-C Low-Pass Filter,” IEEE Trans. Circuits Syst I,vol. 56, pp. 2145-2458, 2009.
[35] C. H. Wang, “A Novel Voltage-Control Sinusoidal Oscillator using Operational Transconductance Amplifier,” M. Eng. thesis, Dept. Elect. Eng., NSYSU, Kaohsiung,Taiwan, R.O.C, 2002.
[36] D. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc.,1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.186.241
論文開放下載的時間是 校外不公開

Your IP address is 3.140.186.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code