Responsive image
博碩士論文 etd-0809110-135203 詳細資訊
Title page for etd-0809110-135203
論文名稱
Title
奈米粒子萃取技術結合毛細管電泳分離: 胺基酸硫醇;三聚氰胺
Nanoparticles Extraction Combine with Capillary Electrophoresis Separation: Aminothiols;melamine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-07
繳交日期
Date of Submission
2010-08-09
關鍵字
Keywords
毛細管電泳、奈米粒子萃取、胺基酸硫醇、三聚氰胺、11-巰基十一酸
capillary electrophoresis, nanoparticle extraction, aminothiol, melamine, 11-mercaptoundecanoic acid
統計
Statistics
本論文已被瀏覽 5693 次,被下載 3523
The thesis/dissertation has been browsed 5693 times, has been downloaded 3523 times.
中文摘要
本篇論文以金奈米粒子作為濃縮萃取試劑,對人體血漿中的胺基酸硫醇分子(Aminothiols)和奶粉中的三聚氰胺(Melamine)進行濃縮萃取,並且搭配毛細管電泳分離,能有效地提升偵測靈敏度。
一、結合金奈米粒子與毛細管電泳來檢測血漿中胺基酸硫醇的總量、自由量和蛋白質上的吸附量:
在本篇研究中,我們使用非離子型界面活性劑(聚山梨醇酯 20 ﹐Tween 20)修飾的金奈米粒子Tween 20-capped gold nanoparticles(Tween 20-AuNPs)來對人體血漿中的五種胺基酸硫醇分子(Aminothiols)進行選擇性地濃縮萃取,並結合毛細管電泳進行分離與偵測。五種aminothiols 分別為:麩胱甘肽(Glutathione﹐GSH)、麩胺酸-半胱胺酸(γ-glutamylcysteine,γ-GluCys)、半胱胺酸(Cysteine ﹐Cys)、同半胱胺酸(Homocysteine ﹐HCys)和半胱胺酸-甘胺酸(Cysteineglycine ﹐CysGly)。首先,為了得到最佳化的萃取效率,我們對Tween 20-AuNPs的數量、取代試劑
1,4-二硫蘇糖醇(Dithiothreitol ﹐DTT)的濃度和界面活性劑的種類進行探討。其次,在Tween 20-AuNPs萃取五種aminothiols的流程中,我們使用二次去離子水來清洗金奈米粒子以降低基質干擾,使得我們能用外標準校正法(external calibration curve)來進行定量。最後,
在最佳化的條件下,五種aminothiols的偵測極限可以降到10.2 - 42.4nM。另外在真實樣品的實驗流程方面,血漿中五種aminothiols的總量(Total Form)與自由量(Free form)的主要差異在於雙硫鍵還原試劑:(Tris(2-carboxyethyl)phosphine ﹐TCEP)加至血清中的先後順序。鑑於此實驗方法具備高選擇性、高靈敏度及良好的再現性,相信此技術在臨床疾病檢測上將有相當大的應用潛力。
二、利用11-巰基十一酸修飾的金奈米粒子來檢測與萃取奶粉中的三聚氰胺:本篇研究使用11-巰基十一酸(11-Mercaptoundecanoic acid﹐MUA)修飾的金奈米粒子(11-Mercaptoundecanoic acid-modified AuNPs ﹐MUA-AuNPs)來檢測奶粉中的三聚氰胺(Melamine)。由於MUA分子同時具有硫醇基和羧基,因此在合成上藉由金硫之間良好的作用力,即可將MUA分子修飾在金奈米粒子表面。在pH = 5.0時,MUA分子上的羧基會與melamine上的胺基以氫鍵的方式形成穩定的錯合物。這不僅能藉由比色法來快速鑑定melamine是否存在樣品溶液中;同時,MUA-AuNPs也可以作為melamine的萃取探針,搭配毛細管電泳來偵測較低濃度的melamine。另外,我們也修飾含有相同
官能基但是碳鏈長度不同的分子至金奈米粒子上,分別為2-巰基乙酸(Thioglycolic acid ﹐TGA)、3-巰基丙酸(3-mercaptopropionic acid ﹐MPA )、6- 巰基己酸( 6-mercaptohexanoic acid )、8- 巰基辛酸
(8-mercaptooctanoic acid)和12-巰基十二酸(12-mercaptododecanoic acid),探討官能基長度是否影響奈米粒子的聚集程度。結果發現,碳鏈越短的分子對於melamine聚集程度越小,這是因為奈米粒子間距越小,產生的立體位障(Steric hindrance)越大,使得金奈米粒子無法抓取較多的melamine。在比色法的最佳化條件下,melamine的線性範圍為200 - 800 nM;然而使用毛細管電泳搭配濃縮萃取法,melamine的線性範圍可以從1.0 nM到1000 nM,其偵測極限可達0.3 nM。由於本實驗方法具備良好的靈敏度、選擇性與再現性,並且可以用比色
法和奈米粒子萃取法來同時對高濃度和低濃度的melamine快速地檢測,因此我們期盼此技術能廣泛地應用在食品檢測。
Abstract
none
目次 Table of Contents
第一章、結合金奈米粒子與毛細管電泳來檢測人體血漿中胺基酸硫醇的總量、自由量和蛋白質上的吸附量
壹、前言1
貳、藥品與方法7
一、藥品與溶液配製7
二、合成Citrate與界面活性劑修飾的金奈米粒子10
三、毛細管電泳偵測系統11
四、Aminothiols萃取流程13
五、分析人體血漿中Aminothiols的總量、自由量與蛋白質上的吸附量14
(一)Aminothiols總量的檢測15
(二)Aminothiols自由量的檢測15
參、結果與討論17
一、TCEP的功用17
二、萃取參數的最佳化條件20
三、再現性、線性和靈敏度的探討25
四、真實樣品的探討30
肆、結論37
伍、參考文獻38

第二章、利用11-巰基十一酸修飾的金奈米粒子來檢測與萃取奶粉中的三聚氰胺
壹、前言47
貳、藥品與方法51
一、藥品與溶液配製51
二、奈米粒子的合成54
三、奈米粒子的鑑定55
四、毛細管電泳55
五、比色法檢測56
六、Melamine的萃取流程57
七、自來水和奶粉中melamine的檢測57
參、結果與討論59
一、比色法檢測59
二、奈米粒子萃取搭配毛細管電泳檢測法70
肆、結論85
伍、參考文獻86
參考文獻 References
第一章、結合金奈米粒子與毛細管電泳來檢測人體血漿中胺基酸硫醇的總量、自由量和蛋白質上的吸附量
(1) Wilson, R. “The use of gold nanoparticles in diagnostics and detection” Chem. Soc. Rev. 2008, 37, 2028-2045.
(2) Boisselier, E.; Astruc, D. “Gold nanoparticles in nanomedicine preparations, imaging, diagnostics, therapies and toxicity” Chem. Soc. Rev. 2009, 38, 1759-1782.
(3) Nilsson, C.; Birnbaum, S.; Nilsson, S. “Use of nanoparticles in capillary and microchip electrochromatography” J. Chromatogr. A 2007, 1168, 212-224.
(4) Wang, K.-Y.; Chuang, S.-A.; Lin, P.-C.; Huang, L.-S.; Chen, S.-H.; Ouarda, S.; Pan, W.-H.; Lee, P.-Y.; Lin, C.-C.; Chen, Y.-J. “Multiplexed Immunoassay: Quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS” Anal. Chem. 2008, 80, 6159-6167.
(5) Smith, J. E.; Medley, C. D.; Tang, Z.; Shangguan, D.; Lofton, C.; Tan, W. “Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells” Anal. Chem. 2007, 79, 3075-3082.
(6) Huang, Y.-F.; Chang, H.-T. “Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2007, 79, 4852-4859.
(7) Li, Y.-C.; Lin, Y.-S.; Tsai, P.-J.; Chen, C.-T.; Chen, W.-Y.; Chen, Y.-C. “Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides” Anal. Chem. 2007, 79, 7519-7525.
(8) Maier, M.; Fritz, H.; Gerster, M.; Schewitz, J.; Bayer, E. “Quantitation of phosphorothioate oligonucleotides in human blood plasma using a nanoparticle-based method for solid-phase extraction” Anal. Chem. 1998, 70, 2197-2204.
(9) Kong, X.; Huang, L.-C.; Liau, S.-C.; Han, C.-C.; Chang, H.-C. “Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides” Anal. Chem. 2005, 77, 4273-4277.
(10) Teng, C.-H.; Ho, K.-C.; Lin, Y.-S.; Chen, Y.-C. “Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis” Anal. Chem. 2004, 76, 4337-4342.
(11) Vanderpuije, B. N.; Han, G.; Rotello, V. M.; Vachet, R. W. “Mixed monolayer-protected gold nanoclusters as selective peptide extraction agents for MALDI-MS analysis” Anal. Chem. 2006, 78, 5491-5496.
(12) Chen, W.-Y.; Chen, Y.-C. “MALDI MS analysis of oligonucleotides desalting by functional magnetite beads using microwave-assisted extraction” Anal. Chem. 2007, 79, 8061-8066.
(13) Hsiao, H.-H.; Hsieh, H.-Y.; Chou, C.-C.; Lin, S.-Y.; Wang, A.-H.; Khoo, K.-H. “Concerted experimental approach for sequential mapping of peptides and phosphopeptides using C18-functionalized magnetic nanoparticles” J. Proteome. Res. 2007, 6, 1313-1324.
(14) Zhao, X.; Cai, Y.; Wang, T.; Shi, Y.; Jiang, G. “Preparation of alkanethiolate-functionalized core/shell Fe3O4@Au nanoparticles and its interaction with several typical target molecules” Anal. Chem. 2008, 80, 9091-9096.
(15) Sha, Y.; Deng, C.; Liu, B. “ Development of C18-functionalized magnetic silica nanoparticles as sample preparation technique for the determination of ergosterol in cigarettes by microwave-assisted derivatization and gas chromatography/mass spectrometry” J. Chromatogr. A 2008, 1198-1199, 27-33.
(16) Chiu, T.-C.; Chang, L.-C.; Chiang, C.-K.; Chang, H.-T. “Determining estrogens using surface-assisted laser desorption-ionization mass spectrometry with silver nanoparticles as the matrix” J. Am. Soc. Mass Spectrom. 2008, 19, 1343-1346.
(17) Li, M.-D.; Tseng, W.-L.; Cheng, T.-L. “Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with CE-LIF” J. Chromatogr. A 2009, 1216, 6451-6458.
(18) Wang, H.; Campiglia, A. D. “Determination of polycyclic aromatic hydrocarbons in drinking water samples by solid-phase nanoextraction and high-performance liquid chromatography” Anal. Chem. 2008, 80, 8202-8209.
(19) Dunn, J. D.; Reid, G. E.; Bruening, M. L. “Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry” Mass Spectrom Rev. 2010, 29, 29-54.
(20) Huang, Y.-F.; Chang, H.-T. “Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2006, 78, 1485-1493.
(21) Li, M.-D.; Cheng, T.-L.; Tseng, W.-L. “Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection” Electrophoresis 2009, 30, 388-395.
(22) Shen, C.-C.; Tseng, W.-L.; Hsieh, M.-M. “Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence” J. Chromatogr. A 2009, 1216, 288-293.
(23) Cecchi, C.; Latorraca, S.; Sorbi, S.; Iantomasi, T.; Favilli, F.; Vincenzini, M. T.; Liguri, G. “Gluthatione level is altered in lymphoblasts from patients with familial Alzheimer's disease” Neurosci. Lett. 1999, 275, 152-154.
(24) Refsum, H.; Ueland, P. M.; Nygard, O.; Vollset, S. E. “Homocysteine and cardiovascular disease” Annu. Rev. Med. 1998, 49, 31-62.
(25) Hoffer, L. J. “Methods for measuring sulfur amino acid metabolism” Curr Opin Clin Nutr Metab Care 2002, 5, 511-517.
(26) McMenamin, M. E.; Himmelfarb, J.; Nolin, T. D. “Simultaneous analysis of multiple aminothiols in human plasma by high performance liquid chromatography with fluorescence detection” J. Chromatogr. B 2009, 877, 3274-3281.
(27) Bayle, C.; Causse, E.; Couderc, F. “Determination of aminothiols in body fluids, cells, and tissues by capillary electrophoresis” Electrophoresis 2004, 25, 1457-1472.
(28) Carlucci, F.; Tabucchi, A. “Capillary electrophoresis in the evaluation of aminothiols in body fluids” J. Chromatogr. B 2009, 877, 3347-3357.
(29) Hill, H. D.; Mirkin, C. A. “The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange” Nat. Protoc. 2006, 1, 324-336.
(30) Huang, C.-C.; Tseng, W.-L. “Role of Fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone remover and sensor” Anal. Chem. 2008, 80, 6345-6350.
(31) Lin, C.-Y.; Yu, C.-J.; Chen, Y.-M.; Chang, H.-C.; Tseng, W.-L. “Simultaneous separation of anionic and cationic proteins by capillary electrophoresis using high concentration of poly (diallyldimethylammonium chloride) as an additive” J. Chromatogr. A 2007, 1165, 219-225.
(32) Ueland, P. M. “Homocysteine Species as Components of Plasma Redox Thiol Status” Clin. Chem. 1995, 41, 340-342.
(33) Carru, C.; Deiana, L.; Sotgia, S.; Pes, G. M.; Zinellu, A. “Plasma thiols redox status by laser-induced fluorescence capillary electrophoresis” Electrophoresis 2004, 25, 882-889.
(34) Garcia, A. J.; Apitz-Castro, R. “Plasma total homocysteine quantification: an improvement of the classical high-performance liquid chromatographic method with fluorescence detection of the thiol-SBD derivatives” J. Chromatogr. B 2002, 779, 359-363.
(35) Han, J. C.; Han, G. Y. “ A procedure for quantitative determination of tris(2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol” Anal. Biochem. 1994, 220, 5-10.
(36) Seiwert, B.; Karst, U. “ Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides” Anal. Chem. 2007, 79, 7131-7138.
(37) Lochman, P.; Adam, T.; Friedecky, D.; Hlidkova, E.; Skopkova, Z. “High-throughput capillary electrophoretic method for determination of total aminothiols in plasma and urine” Electrophoresis 2003, 24, 1200-1207.
(38) Zinellu, A.; Sotgia, S.; Scanu, B.; Usai, M. F.; Fois, A. G.; Spada, V.; Deledda, A.; Deiana, L.; Pirina, P.; Carru, C. “Simultaneous detection of N-acetyl-l-cysteine and physiological low molecular mass thiols in plasma by capillary electrophoresis” Amino Acids 2009, 37, 395-400.
(39) Saetre, R.; Rabenstein, D. L. “Determination of cysteine and glutathione in fruit by high-performance liquid chromatography” J. Agric. Food Chem. 1978, 26, 982-983.
(40) Kusmierek, K.; Chwatko, G.; Glowacki, R.; Bald, E. “Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection” J. Chromatogr. B 2009, 877, 3300-3308.
(41) Shirabe, T.; Ito, K.; Yoshimura, E. “Dequenching of Cu(I)−Bathocuproinedisulfonate complexes for high-performance liquid chromatographic determination of phytochelatins” Anal. Chem. 2008, 80, 9360-9362.
(42) Wang, J.; Zima, J.; Lawrence, N. S.; Chatrathi, M. P.; Mulchandani, A.; Collins, G. E. “Microchip capillary electrophoresis with electrochemical detection of thiol-containing degradation products of V-Type nerve agents” Anal. Chem. 2004, 76, 4721-4726.
(43) Ren, D.; Julka, S.; Inerowicz, H. D.; Regnier, F. E. “Enrichment of cysteine-containing peptides from tryptic digests using a quaternary amine tag” Anal. Chem. 2004, 76, 4522-4530.
第二章、利用11-巰基十一酸修飾的金奈米粒子來檢測與萃取奶粉中的三聚氰胺
(1) Sugita, T.; Ishiwata, H.; Yoshihira, K. “Release of formaldehyde and melamine from tableware made of melamine-formaldehyde resin” Food Addit. 1990, 7, 21–27.
(2) Dobson, R. L.; Motlagh, S.; Quijano, M.; Cambron, R. T.; Baker, T. R, Pullen, A. M.; Regg, B. T.; Bigalow-Kern, A. S.; Vennard, T.; Fix, A.; Reimschuessel, R.; Overmann, G.; Shan, Y.; Daston, G. P. “Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs” Toxicol. Sci. 2008, 106, 251–262.
(3) Brown, C. A.; Jeong, K. S.; Poppenga, R. H.; Puschner, B.; Miller, D. M.; Ellis, A. E.; Kang, K. I. ; Sum, S. ; Cistola, A. M. ; Brown, S. A. “Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007”J. Vet. Diagn. Invest. 2007, 19, 525-531.
(4) Ching, W. L.; Lawrence, L.; Xiao, Y. C.; Sidney, T.; Samson, S. Y. W. “Diagnosis and spectrum of melamine-related renal disease: plausible mechanism of stone formation in humans” Clin Chim. Acta 2009, 402, 150–155.
(5) Hau, A. K.; Kwan, T. H.; Li, P. K. “Melamine toxicity and the kidney” J. Am. Soc. Nephrol. 2009, 20, 245-250.
(6) Lund, K. H.; Petersen, J. H. “Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic” Food Addit. Contam. 2006, 23, 948-955.
(7) Tittlemier, S. A. “Methods for the analysis of melamine and related compounds in foods: a review” Food Addit. Contam. Part A-Chem. 2010, 27, 129-145.
(8) Tyan, Y. C.; Yang, M. H.; Jong, S. B.; Wang, C. K.; Shiea, J. “Melamine contamination” Anal. Bioanal. Chem. 2009, 395, 729–735.
(9) Lin, M. “A review of traditional and novel detection techniques for melamine and its analogues in foods and animal feed” Front. Chem. Eng. China 2009, 3, 427-435.
(10) Zhu, L.; Gamez, G.; Chen, H.; Chingin, K.; Zenobi, R. “Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS)” Chem. Comm. 2009, 559-561.
(11) Huang, G.; Ouyang, Z.; Cooks, R. G. “High-throughput trace melamine analysis in complex mixtures” Chem. Comm. 2009, 556-558.
(12) Tang, H.-W.; Ng, K.-M.; Chui, S.-S.; Che, C.-M.; Lam, C.-W.; Yuen, K.-Y.; Siu, T.-S.; Lan, L.-C.; Che, X. “Analysis of Melamine Cyanurate in Urine Using Matrix-Assisted Laser Desportion/Ionization Mass Spectrometry” Anal. Chem. 2009, 81, 3676-3682.
(13) He, L.; Liu, Y.; Lin, M.; Awika, J.; Ledoux, D. R.; Li, H.; Mustapha, A. “A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates” Sens. & Instrumen. Food Qual. 2008, 2, 66-71.
(14) Sun, H.; Liu, N.; Wang, L.; Wu, Y. “Effective separation and simultaneous detection of cyromazine and melamine in food by capillary electrophoresis” Electrophoresis 2010, 31, 2236-2241.
(15) Chen, Z.; Yan, X. “Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection” J. Chromatogr. A 2008, 1198-1199, 27-33.
(16) Yan, N.; Zhou, L.; Zhu, Z.; Chen, X. “Determination of Melamine in Dairy Products, Fish Feed, and Fish by Capillary Zone Electrophoresis with Diode Array Detection” J. Agric. Food Chem. 2009, 576, 807-811.
(17) Wen, Y.; Liu, H.; Han, P.; Gao, Y.; Luan, F.; Li, X. “Determination of melamine in milk powder, milk and fish feed by capillary electrophoresis: a good alternative to HPLC” J. Sci. Food Agric. 2010 (ASAP).
(18) Meng, L.; Shen, G.; Hou, X.; Wang, L. “Determination of Melamine in Food by SPE and CZE with UV detection” Chromatographia 2009, 90, 991-994.
(19) Tsai, I.-L.; Sun, S.-W.; Liao, H.-W.; Lin, S.-C.; Kuo, C.-H. “Rapid analysis of melamine in infant formula by sweeping-micellar electrokinetic chromatography” J. Chromatogr. A. 2009, 1216, 8296–8303.
(20) Wang, X.; Chen, Y. “Determination of aromatic amines in food products and composite food packaging bags by capillary electrophoresis coupled with transient isotachophoretic stacking” J. Chromatogr. A 2009, 1216, 6451-6458.
(21) Hsu, Y.-F.; Chen, K.-T.; Liu, Y.-W.; Hsieh, S.-H.; Huang, H.-Y. “Determination of melamine and related triazine by-products ammeline, ammelide, and cyanuric acid by micellar electrokinetic chromatography” Anal. Chim. Acta 2010, 673, 206–211.
(22) Wang, A.; Wu, C.-J.; Chen, S.-H. “Gold Nanoparticle-Assisted Protein Enrichment and Electroelution for Biological Samples Containing Low Protein Concentration-A Prelude of Gel Electrophoresis” J. Proteome Res. 2006, 5, 1488-1492.
(23) Li, M.-D.; Tseng, W.-L.; Cheng, T.-L. “Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with capillary electrophoresis/laser-induced native fluorescence” J. Chromatogr. A 2009, 1216, 6451-6458.
(24) Wang, H.; Campiglia, A. D. “Determination of Polycyclic Aromatic Hydrocarbons in Drinking Water Samples by Solid-Phase Nanoextraction and High-Performance Liquid Chromatography” Anal. Chem. 2008, 80, 8202–8209.
(25) Shen, C.-C.; Tseng, W.-L.; Hsieh, M.-M. “Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence” J. Chromatogr. A 2009, 1216, 288-293.
(26) Chang, C.-W.; Tseng, W.-L.“Gold Nanoparticle Extraction Followed by Capillary Electrophoresis to Determine the Total, Free, and Protein-Bound Aminothiols in Plasma” Anal. Chem.2010, 82, 2696–2702.
(27) Sherrington, D. C.; Taskinen, K. A. “Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions” Chem. Soc. Rev. 2001, 30, 83-93.
(28) Ai, K.; Liu, Y.; Lu, L. “Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula” J .Am. Chem. Soc. 2009, 131, 9496-9497.
(29) Chi, H.; Liu, B.; Guan, G.; Zhang, Z.; Han, M. Y. “A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles” Analyst 2010, 135, 1070-1075.
(30) Han, C.; Li, H. “Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles” Analyst 2010, 135, 583-588.
(31) Ai, K.; Liu, Y.; Lu, L. “Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula” J .Am. Chem. Soc. 2009, 131, 9496-9497.
(32) Preston, T. C.; Nuruzzaman, M.; Jones, N. D.; Mittler, S. “Role of Hydrogen Bonding in the pH-Dependent Aggregation of Colloidal Gold Particles Bearing Solution-Facing Carboxylic Acid Groups” J. Phys. Chem. C. 2009, 113, 14236–14244.
(33) Jang, Y. H.; Hwang, S.; Chang, S. B.; Ku, J.; Chung, D. S. “Acid Dissociation Constants of Melamine Derivatives from Density Functional Theory calculation” J. Phys. Chem. A. 2009, 113, 13036–13040.
(34) Lin, C.-Y.; Yu, C.-J.; Chen, Y.-M.; Chang, H.-C.; Tseng, W.-L. “Determination of melamine derivatives, melame, meleme, ammeline and ammelide by high-performance cation-exchange chromatography” J. Chromatogr. A 1998, 815, 197-204.
(35) Carru, C.; Deiana, L.; Sotgia, S.; Pes, G. M.; Zinellu, A. “The nucleophilic substitution reactions in s-triazanic systems—I Kinetics and mechanism of alkaline hydrolysis of the melamine” Tetrahedron.1968, 24, 2701-2705.
(36) Li, L.; Li, B.; Cheng, D.; Mao, L. “Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe” Food Chemistry.2010, 122, 895–900.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code