Responsive image
博碩士論文 etd-0809110-135534 詳細資訊
Title page for etd-0809110-135534
論文名稱
Title
利用化學氣相沉積法生長非極性之(11-20)氮化鎵薄膜在LiGaO2基板上
Growth of Nonpolar (11-20) GaN Films on LiGaO2 Substrate by Chemical Vapor Deposition Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-08-09
關鍵字
Keywords
鎵酸鋰、氮化鎵、化學氣相沉積
CVD, LiGaO2, GaN
統計
Statistics
本論文已被瀏覽 5626 次,被下載 0
The thesis/dissertation has been browsed 5626 times, has been downloaded 0 times.
中文摘要
本文之實驗是以化學氣相沉積法(Chemical vapor deposition, CVD)在LiGaO2(010)基板上生長(11-20)氮化鎵(GaN)薄膜。以鎵金屬、NH3和N2分別作為Ga source、N source及載送氣體(carrier gas),研究反應溫度、反應壓力等實驗條件對氮化鎵薄膜生長的影響。以掃描式電子顯微鏡(SEM) 、X光繞射(XRD)、以及電子背向繞射(EBSD)量測實驗樣品之表面形貌和結晶結構,以激發光光譜(PL)量測樣品之發光性質,以穿透式電子顯微鏡(TEM)觀察其磊晶關係。
固定溫度為950 °C、NH3氣體流量為450 sccm條件下,以不同的生長壓力(50 torr ~ 400 torr)生長60分鐘,可以獲得不同表面形貌的薄膜,對於生長壓力50~300 torr之樣品作電子背向繞射(EBSD)分析,得知氮化鎵薄膜的結晶面為(11-20)GaN。而在固定壓力為50 torr、N2/NH3氣體流量為450/30 sccm條件下,以不同的生長溫度(900°C ~ 975°C)生長60分鐘,亦得到不同表面形貌,進行EBSD分析,皆可得到氮化鎵薄膜的結晶面為(11-20)GaN。此外以生長溫度為950 °C、生長壓力為50 torr 的條件下延長生長時間為2小時所生長的試片亦可藉由EBSD分析得到氮化鎵薄膜的結晶面為(11-20)GaN,並在SEM下觀察到較平坦的表面形貌,以TEM分析得到氮化鎵薄膜及基板磊晶關係為(11-20)GaN // (010)LiGaO2 及 (1-100)GaN //(100)LiGaO2。
Abstract
In this thesis, we investigated the growth of nonpolar (11-20) GaN films on LiGaO2 substrate by a simple chemical vapor deposition (CVD) process. Metallic gallium, NH3 and ultra-purity nitrogen were used as Ga, N sources and carrier gas. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) were used to study the influence of growth conditions such as reaction pressure, growth temperature and deposition time on the GaN epilayer’s orientation and surface morphology.
It’s found that GaN epilayers have different surface morphology grown on LiGaO2 substrates by the change of growth pressures (50 torr ~ 400 torr) under temperature of 950 °C, NH3 gas flow of 450 sccm and the growth time of 60 minutes, and uniform a-plane GaN epilayers are found with growth pressures 50, 200 and 300 torr. In addition, we obtain uniform a-plane GaN epilayers with different surface morphology by the change of growth temperatures (900 °C ~ 975 °C) under pressure of 50 torr, N2/NH3 gas flow of 450/30 sccm and the growth time of 60 minutes.
Furthermore, we obtain flatter a-plane GaN epilayer by a longer growth time (120 mins) under temperature of 950 °C, pressure of 50 torr and N2/NH3 gas flow of 450/30 sccm. The orientation relationship between GaN and LiGaO2 was determined as (11-20)GaN // (010)LiGaO2 and (1-100)GaN // (100)LiGaO2 by TEM analysis.
目次 Table of Contents
摘要................................................................................I
目錄...............................................................................III
表 目錄..........................................................................VI
圖 目錄.........................................................................VII
第一章 緒論.....................................................................1
1-1前言...........................................................................1
1-2文獻回顧....................................................................2
1-3研究動機....................................................................8
第二章 理論基礎.............................................................9
2-1 氮化鎵之結構與性質...................................................9
2-2 鎵酸鋰(LGO)基板......................................................11
第三章 實驗方法與步驟..................................................14
3-1 實驗方法..................................................................14
3-2 實驗步驟..................................................................14
3-2-1 基板準備...............................................................15
3-2-2 實驗裝置...............................................................15
3-2-3 CVD生長..............................................................16
3-3 量測系統介紹...........................................................18

3-3-1 掃描式電子顯微鏡(Scanning Electron Microscope,
SEM)………………………………..........18
3-3-2 X光繞射分析儀 (X-ray diffraction, XRD)…………...18
3-3-3光激發光譜(Photoluminescence spectroscopy, PL)................................................................18
3-3-4 原子力顯微鏡(Atomic Force Microscope, AFM................................................................19
3-3-5 穿透式電子顯微鏡
(Transmission Electron Microscopy, TEM)....................................................19
第四章 結果與討論........................................................20
4-1 生長壓力對氮化鎵薄膜的影響....................................20
4-1-1 XRD結構分析.......................................................21
4-1-2 掃描式電子顯微鏡(SEM)表面形貌分析....................23
4-1-3 電子背向繞射(EBSD)結晶結構分析.........................24
4-2 生長溫度對氮化鎵薄膜的影響....................................33
4-2-1 XRD結構分析.......................................................34
4-2-2 掃描式電子顯微鏡(SEM)表面形貌分析....................35
4-2-3 電子背向繞射(EBSD)結晶結構分析.........................36
4-2-4 PL 發光性質分析..................................................43
4-3 生長時間較長試片之分析與討論.................................45
4-3-1 XRD結構分析.......................................................45
4-3-2 掃描式電子顯微鏡(SEM)表面形貌分析....................45
4-3-3 電子背向繞射(EBSD)結晶結構分析.........................46
4-3-4 PL 發光性質分析..................................................48
4-3-5 原子力顯微鏡(AFM)分析........................................48
4-3-6 穿透式電子顯微鏡(TEM)分析.................................49
第五章 結論..................................................................52
參考文獻.......................................................................54
參考文獻 References
[1] J. McMurran, M. Todd, J. Kouvetakis, and D. J. Smith, Appl. Phys. Lett. 69,
203 (1996)
[2] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. Lett. 78, 1303
(2001)
[3] T. Ishii, Y. Tazoh, S. Miyazawa, Journal of Crystal Growth 186, 409–419 (1998)
[4] X.M. Cai, A.B. Djurišić, M.H. Xie, Thin Solid Films 515, 984–989 (2006)
[5] D. Kisailus and F.F. Lange, J. Mater. Res., Vol. 16, No. 7, Jul (2001)
[6] S. H. Ahn, S. H. Lee, K. S. Nahm, E. K. Suh, M. H. Hong, Journal of Crystal
Growth 234, 70–76 (2002)
[7] S.M. Kang, T.I. Shin, D.V. Dihn, J.H. Yang, S.-W. Kim, D.H. Yoon, Journal of
Crystal Growth 311, 490-494 (2009)
[8] L. Yu, Y. Ma, Z. Hu, Journal of Crystal Growth 310, 5237–5240 (2008)
[9] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)
[10] T. L Chu, J. Electrochem. Soc., 118, 1200-1203 (1971)
[11] S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett. 42, 427 (1983)
[12] S. Pal, C. Jacob, Bull. Mater. Sci. 27, 501–504 (2004)
[13] M. A. Khan, R. A. Skogman, and R. G. Schulze, Appl. Phys. Lett. 42, 430 (1983)
[14] H. Amano, N. Sawaki, and I. Akasaki, Appl. Phys. Lett. 48, 353 (1986)
[15] S. Nakamura, Jap. J. Appl. Phys. 30, L1705 (1991)
[16] S. Nakamura, Y. Harada, and M. Seno, Appl. Phys. Lett. 58, 2021 (1991)
[17] T. Detchprohm, K. Hiramatsu, H. Amano, and I. Akasaki, Appl. Phys. Lett. 61, 2688 (1992)
[18] M. E. Lin, S. Strite, A. Agarwal, A. Salvador, G. L. Zhou, N. Teraguchi, A. Rockett, and H. Morkoç, Appl. Phys. Lett. 62, 702 (1993)
[19] S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, 2390 (1993)
[20] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)
[21] E. S. Hellman, Z.L. Weber, D.N.E. Buchanan, MRS Internet J. Nitride Semicond. Res. 2, 30 (1997)
[22] K. Xu, J. Xu, P. Deng, R. Qiu, Z. Fang, Phys. Stat. Sol. A176, 589 (1999)
[23] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, Nature, 406, 865 (2000)
[24] H. P. Maruska, D.W. Hill, M.C. Chou, J.J. Gallagher, B. Chai, Opto-Electronics Rev. 11(1), 7 (2003)
[25] M.M.C. Chou, D.R. Hang, H. Kalisch, R.H. Jansen, Y. Dikme, M. Heuken and G. P. Yablonskii, J. Appl. Phys. 101, 103–106 (2007)
[26] M. Okada, Y. Higaki, T. Yanagi, Y. Shimizu, Y. Nanishi, T. Ishii, S. Miyazawa, Journal of Crystal Growth 189/190, 213–217 (1998)
[27] T. Ishii, Y. Tazoh, S. Miyazawa, Journal of Crystal Growth 189/190, 208–212 (1998)
[28] S. Duan, X. Teng, P. Han, D.C. Lu, Journal of Crystal Growth 195, 304–308 (1998)
[29] William A. Doolittle, S. Kang, A. Brown, Solid-State Electronics 44, 229–238 (2000)
[30] K. Xu, P. Deng, J. Xu, G. Zhou, W. Liu, Y. Tian, Journal of Crystal Growth 216,
343–347 (2000)
[31] H. Takahashi, H. Fujioka, J. Ohta, M. Oshima, M. Kimura, Journal of Crystal Growth 259, 36–39 (2003)
[32] M. Losurdo, D. Giuva, G. Bruno, S. Huang, T.H. Kimc, A. S. Brown, Journal of Crystal Growth 264, 139–149 (2004)
[33] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994)
[34] L. Liu, J.H. Edgar, Materials Science and Engineering R 37, 61–127 (2002)
[35] C. Cao, X. Xiang, H. Zhu, Journal of Crystal Growth 273, 375–380 (2005)
[36] K.Tanaka, N.Kotera, H Nakamura, Electronics Letters, Vol. 34, No. 22 , pp. 2163, (1998)
[37] C. Q. Chen., Appl. Phys. Lett. 81, 3194 (2002)
[38] E. Kuokstis., Appl. Phys. Lett. 81, 4130 (2002)
[39] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars Appl. Phys. Lett. 81, 469 (2002)[40] H. M. Ng, Appl. Phys. Lett. 80, 4369 (2002)
[40] H. M. Ng, Appl. Phys. Lett. 80, 4369 (2002)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.219.236.62
論文開放下載的時間是 校外不公開

Your IP address is 18.219.236.62
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code